University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:B.Sc. M.Sci.

Mathematics C325: Real Fluids

COURSE CODE : MATHC325

UNIT VALUE : 0.50

DATE : 07-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

You may assume that external (body) forces are absent.

1. Write down the constitutive relation for an isotropic Newtonian fluid with constant density ρ and coefficient of viscosity μ in terms of the stress tensor, $\sigma_{i j}$, and the rate of strain tensor, $e_{i j}$.

Assuming the Cauchy equations of motion,

$$
\rho \frac{D u_{i}}{D t}=\frac{\partial \sigma_{i j}}{\partial x_{j}}
$$

derive the Navier-Stokes momentum equations for an incompressible Newtonian fluid in the form

$$
\rho\left[\frac{\partial \mathbf{U}}{\partial t}+(\mathbf{U} \cdot \nabla) \mathbf{U}\right]=-\nabla p+\mu \nabla^{2} \mathbf{U}
$$

in the usual notation.

Write down a formula for the rate of energy dissipation per unit volume, ϕ, in terms of the rate of strain tensor, $e_{i j}$. Calculate the dissipation function ϕ for the steady Couette flow in a planar channel of width d with one wall fixed and the other wall moving with constant speed u_{0}.
2. Incompressible fluid of kinematic viscosity ν is contained in a channel between two parallel walls at $y=0$ and $y=d$ in the (x, y)-plane. The walls of the channel perform periodic oscillations in the x-direction with the speeds $u=u_{0} \cos (\omega t)$ and $u=u_{1} \cos (\omega t)$, at $y=0$ and $y=d$, respectively. Here u_{0}, u_{1} are constant and there is no additional pressure gradient along the channel. Verify that a time-periodic, uni-directional, flow is possible with the velocity profile of the form

$$
u(y, t)=\operatorname{Re}\left\{\mathrm{e}^{i \omega t}\left[u_{1} \frac{\sinh (\alpha y)}{\sinh (\alpha d)}+u_{0} \frac{\sinh (\alpha(d-y))}{\sinh (\alpha d)}\right]\right\}
$$

with $\alpha=(1+i) \sqrt{\omega /(2 \nu)}$.
Find the limiting form of the velocity profile in the case of large viscosity, $\nu \rightarrow \infty$, and give a qualitative interpretation of your result.
3. Incompressible viscous fluid with density ρ and kinematic viscosity ν flows steadily in an infinitely long planar channel between parallel walls at $y=0$ and $y=d$ in the (x, y)-plane. A constant pressure gradient, $\partial p / \partial x=-\rho G$, is applied along the channel. The walls are made of a permeable material and the fluid is injected into the channel through the wall at $y=0$ and extracted from the channel through the second wall at $y=d$ with the same velocity, $v=v_{w}$, in the y-direction. Show that a two-dimensional flow in the channel is possible with the x-component of the velocity vector of the form

$$
u=\frac{G}{v_{w}}\left[y-d \frac{\exp \left(v_{w} y / \nu\right)-1}{\exp \left(v_{w} d / \nu\right)-1}\right] .
$$

Determine the y-component of the velocity vector in the flow.
In the case of weak injection, $v_{w} \rightarrow 0$, show that the flow reduces to a Poiseuille flow due to a constant pressure gradient.
Discuss briefly the case of strong suction through the lower wall, $v_{w} \rightarrow-\infty$, with the focus on the near-wall layer of thickness $y=O\left(\left|v_{w}\right|^{-1}\right)$.
4. State the assumptions of the lubrication approximation for a two-dimensional flow in a narrow gap between two solid boundaries.
Incompressible viscous fluid fills a narrow gap between a flat plate at $y=0$ and a flexible wall at $y=h(x, t)$ in the (x, y)-plane. Assuming that the flow is governed by the lubrication approximation, show that

$$
h_{t}=\frac{1}{12 \mu}\left(h^{3} p_{x}\right)_{x}
$$

where $p=p(x, t)$ is the pressure in the gap.
The pressure along the gap in the range $x>0$ varies according to

$$
p=\frac{p_{0}}{m+1} x^{m+1}
$$

with some constants p_{0} and m. Show that the shape of the boundary can take a self-similar form,

$$
h(x, t)=t^{\alpha} H(\xi), \quad \xi=x / t^{\beta}
$$

provided that

$$
\alpha H+\frac{1+2 \alpha}{m-1} \xi H^{\prime}=\frac{p_{0}}{12 \mu}\left(\xi^{m} H^{3}\right)^{\prime}
$$

Derive an implicit solution, $\xi=\xi(H)$ for the case $\alpha=-1, m=2$ when $\xi>0$.
5. Show that the streamfunction in a two-dimensional, slow steady flow of incompressible fluid satisfies the equation

$$
\nabla^{2}\left(\nabla^{2} \psi\right)=0
$$

An axisymmetric slow flow is governed by the equation for the streamfunction of the form $D^{2}\left(D^{2} \psi\right)=0$ where

$$
D^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)
$$

in spherical polar coordinates. Derive the Stokes solution for the flow past a sphere of radius a placed in a uniform stream with the speed u_{∞}.
You may assume the continuity equation

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)=0
$$

