UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٩

ŝ

Mathematics C327: Real Analysis

COURSE CODE	: MATHC327
	: 0.50
DATE	: 17-MAY-06
TIME	: 10.00
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Define the notion of Lebesgue measurable subsets of \mathbb{R} .

Show that Borel sets are Lebesgue measurable.

For any non-negative measurable function f on a measure space define an increasing sequence of non-negative, simple, measurable functions converging to f.

Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function. Show that f is Lebesgue measurable.

- 2. Define the integral of real functions on a measure space $(\Omega, \mathcal{F}, \mu)$. Show that every integrable function is finite almost everywhere. State and prove Hölder's inequality for real functions on $(\Omega, \mathcal{F}, \mu)$. Find the largest value of $\int_0^1 g(x)x^3 dx$ where g runs through Lebesgue measurable functions on [0, 1] such that $\int_0^1 g^4(x) dx \leq 1$.
- 3. State the Monotone Convergence Theorem.

State and prove the Dominated Convergence Theorem. (The Monotone Convergence Theorem may be used without a proof, but the Fatoux Lemma, if used, should be stated and proved as well.)

Suppose that μ is a Borel measure on \mathbb{R} such that finite sets have measure zero. Show that for every $f \in L_1(\mu)$ the function

$$F(x) = \int_{(-\infty,x)} f \, d\mu$$

is continuous on \mathbb{R} .

MATHC327

4. State the Fubini Theorem and assuming its validity for non-negative measurable functions prove it for functions whose integral exists.

Show that the function

$$f(x,y) = \frac{2xy}{1+x^4+y^4}$$

is not λ_2 -integrable.

5. Suppose that μ is a finite signed measure on a σ -algebra \mathcal{F} of subsets of Ω such that $\mu(\Omega) < 0$. Show that there is $E \in \mathcal{F}$ so that $\mu(E) < 0$ and $\mu(F) \leq 0$ whenever $F \in \mathcal{F}$ is a subset of E.

State the Radon-Nikodým Theorem.

Suppose that μ, ν are measures on a σ -algebra \mathcal{F} of subsets of Ω such that $\mu(\Omega) = 1$ and $\nu(\Omega) = 2$. Let f be the Radon-Nikodým derivative of μ with respect to $\mu+\nu$. By considering first the sets $\{x : f(x) \leq 0\}$ and $\{x : f(x) \geq 1\}$, find $\mu(\{x : f(x) > 0\})$ and $\nu(\{x : f(x) < 1\})$. 15

ŝ,