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All questions may be attempted but only marks obtained on the best five solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Consider the following system of linear equations:

2w + z + y — 4z = 0
v + z + y + z = 4
3w + 2z + 2y — 3z = C
(a) Write the system in the form of a matrix equation.

(b) Reduce the augmented matrix of this system to echelon form. For what value
of C does the system have a solution? What is the rank of the augmented
matrix in this case?

(c) Find the general solution of the system (with your value of C from part (b)
above) in the form a + sv; + tv, where g, v, and v, are vectors and s and t are
scalars.

(d) Apply the Gram-Schmidt process to the pair of vectors v, v, to give two new
orthonormal vectors Ql and g,.

2. (a) Explain what is meant by eigenvalues and eigenvectors of a square matrix A.

(b) Find the eigenvalues and eigenvectors of the following matrix:

(3 =2

N2 -2 )

(c) Find the general solution, z(t) and y(t), to the pair of ordinary differential
equations:

[BS

dz dy
P 3 — 2y ; 7 2z — 2y + 2

(d) A particular solution to the system of (c) above has z(0) = 7 and y(0) = 6.
Find the explicit form of z(¢) and y(¢) in this case.
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(a) Find the general solution to the differential equation

d? dy
xzd—x'z—Sxd + 8y = —32°.

(b) A solution y(z) to the differential equation in (a) above satisfies

Find the explicit form of y(z), and calculate y(3).

(c) Find the general solution to the differential equation

a1

ET 3 +5f=0.

4. The Fourier series for a function f(z) with period 2 is

1 > SN
flz) = 590 + ; a, cos (nzx) + ; by, sin (nx)

(a) Write down formulae for the Fourier coefficients a, and b,
(b) What can be said about the coefficients a, and b, if f(z) is
(i) odd; (ii) even?

A function f(z) with period 27 is defined by
flz)=1x —-nm<z<T

(c) Sketch the graph of the function for three periods. Is it odd or even?
(d) Calculate the Fourier coefficients.

(e) Using Parseval’s identity:

1 [ 1 1 0
o _Wf(x)f(a:)da: Z §Z=:a +b2)
show that

2.1
Sa=%
n=1
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5. Let f(z,y) be a real valued function of two variables z and y.

(a) Explain what is meant by a critical point of the function f(z,y).
(b) Describe the possible types of non-degenerate critical point that can occur.

(c) Give a condition in terms of second partial derivatives of f, under which the
critical point is non-degenerate.

Consider the function
f(z,y) = 2%y + zy° + 2zy + 2y°.

(d) Find all of the first and second order partial derivatives of f.
(e) Find and classify the four critical points of f.

6. Consider the vector field
u(z,y,z) = (zy, T +y,32° + 2).

(a) Calculate V - u, the divergence of u.
(b) Calculate V x u, the curl of u.

Now consider the scalar function

— 72 2 Y
flzy)=z"+y +($T+—3—/2)_1/-§'
Calculate the Laplacian V2f:

(c) directly; and

(d) by converting into plane polar coordinates and using the standard form

2p_ 10 (0f\  1&f
Vif= or ) T rigee
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7. (a) Consider the complex conjugate operator G, which acts on a complex number
z=x+1y:

G : z+iy —z—1y.

Is it a linear operator? Give your reasons.

(b) Explain what is meant by the commutator [L;, Ls] of two linear operators L,
and L,.

(c) Show that, for any three linear operators A, B and C,
[AoB,Cl=A0[B,C]+[A,C]oB.
(d) Consider the three linear operators (acting on a two-dimensional vector)
20 01 0 -1
we(37) w(i0) w==(07)

(i) Calculate [Lg, Lc];
(ii) Calculate [L4, Lc);
(iii) Using the expression from part (c) above, deduce [L4 o Lp, L¢l.
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