University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B3D: Pure Mathematics

COURSE CODE : MATHB03D

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 11-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Consider the following system of linear equations:

$$
\begin{aligned}
2 w+x+y-4 z & =0 \\
w+x+y+z & =4 \\
3 w+2 x+2 y-3 z & =C
\end{aligned}
$$

(a) Write the system in the form of a matrix equation.
(b) Reduce the augmented matrix of this system to echelon form. For what value of C does the system have a solution? What is the rank of the augmented matrix in this case?
(c) Find the general solution of the system (with your value of C from part (b) above) in the form $\underline{a}+s \underline{v}_{1}+t \underline{v}_{2}$ where $\underline{a}, \underline{v}_{1}$ and \underline{v}_{2} are vectors and s and t are scalars.
(d) Apply the Gram-Schmidt process to the pair of vectors $\underline{v}_{1}, \underline{v}_{2}$ to give two new orthonormal vectors $\underline{\hat{g}}_{1}$ and $\underline{\hat{g}}_{2}$.
2. (a) Explain what is meant by eigenvalues and eigenvectors of a square matrix $\underline{\underline{A}}$.
(b) Find the eigenvalues and eigenvectors of the following matrix:

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) .
$$

(c) Find the general solution, $x(t)$ and $y(t)$, to the pair of ordinary differential equations:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=3 x-2 y-1 ; \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=2 x-2 y+2
$$

(d) A particular solution to the system of (c) above has $x(0)=7$ and $y(0)=6$. Find the explicit form of $x(t)$ and $y(t)$ in this case.
3. (a) Find the general solution to the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=-3 x^{3}
$$

(b) A solution $y(x)$ to the differential equation in (a) above satisfies

$$
y(1)=0 ; \quad y(2)=0
$$

Find the explicit form of $y(x)$, and calculate $y(3)$.
(c) Find the general solution to the differential equation

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} t^{2}}-4 \frac{\mathrm{~d} f}{\mathrm{~d} t}+5 f=0
$$

4. The Fourier series for a function $f(x)$ with period 2π is

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

(a) Write down formulae for the Fourier coefficients a_{n} and b_{n}.
(b) What can be said about the coefficients a_{n} and b_{n} if $f(x)$ is
(i) odd;
(ii) even?

A function $f(x)$ with period 2π is defined by

$$
f(x)=x \quad-\pi \leq x<\pi
$$

(c) Sketch the graph of the function for three periods. Is it odd or even?
(d) Calculate the Fourier coefficients.
(e) Using Parseval's identity:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) f(x) \mathrm{d} x=\frac{1}{4} a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

5. Let $f(x, y)$ be a real valued function of two variablès x and y.
(a) Explain what is meant by a critical point of the function $f(x, y)$.
(b) Describe the possible types of non-degenerate critical point that can occur.
(c) Give a condition in terms of second partial derivatives of f, under which the critical point is non-degenerate.

Consider the function

$$
f(x, y)=x^{2} y+x y^{2}+2 x y+2 y^{2} .
$$

(d) Find all of the first and second order partial derivatives of f.
(e) Find and classify the four critical points of f.
6. Consider the vector field

$$
\underline{u}(x, y, z)=\left(x y, x+y, 3 z^{2}+x\right) .
$$

(a) Calculate $\underline{\nabla} \cdot \underline{u}$, the divergence of \underline{u}.
(b) Calculate $\underline{\nabla} \times \underline{u}$, the curl of \underline{u}.

Now consider the scalar function

$$
f(x, y)=x^{2}+y^{2}+\frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}
$$

Calculate the Laplacian $\nabla^{2} f$:
(c) directly; and
(d) by converting into plane polar coordinates and using the standard form

$$
\nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}
$$

7. (a) Consider the complex conjugate operator G, which acts on a complex number $z=x+i y:$

$$
G: x+i y \longrightarrow x-i y
$$

Is it a linear operator? Give your reasons.
(b) Explain what is meant by the commutator $\left[L_{1}, L_{2}\right]$ of two linear operators L_{1} and L_{2}.
(c) Show that, for any three linear operators A, B and C,

$$
[A \circ B, C]=A \circ[B, C]+[A, C] \circ B
$$

(d) Consider the three linear operators (acting on a two-dimensional vector)

$$
L_{A}=\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right) \quad L_{B}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad L_{C}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(i) Calculate $\left[L_{B}, L_{C}\right]$;
(ii) Calculate $\left[L_{A}, L_{C}\right]$;
(iii) Using the expression from part (c) above, deduce $\left[L_{A} \circ L_{B}, L_{C}\right]$.

