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All questions may be attempted but only marks obtained on the best five solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Consider the following system of linear equations:

w - + Yy - 2z = 2
w + 4+ y + 3z = 4
w + ¥y + 2z = 3
-w + r -y + 2z = -2

(a) Write the system in the form of a matrix equation.

(b) Reduce the augmented matrix of this system to echelon form. What is the
rank of the augmented matrix?

(c) Find the general solution of the system in the form a + sv; + tv, where g, v,
and v, are vectors and s and ¢ are scalars.

(d) Apply the Gram-Schmidt process to the pair of vectors v, v, to give two new
orthonormal vectors gl and Gy

2. (a) Explain what is meant by eigenvalues and eigenvectors of a square matrix A.

(b) Find the eigenvalues of the following matrix:

[N

Il
O = W
N
[JS e I ]

and find an eigenvector corresponding to each eigenvalue.

(c) Hence find a matrix V. for which ;/__"1 = LT and gTéL is diagonal. Write
down the diagonal matrix that corresponds to your matrix V.

(d) Write down the general solution (z(t), y(t), 2(t))" to the set of ordinary differ-
ential equations:
T = 3z + y
Yy = T + 2y + =z
z = vy + 3z

in which a dot indicates d/dt, i.e. £ = dz/dt and so on.
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3. (a) Find the general solution to the differential equation

df _
(t+2)-at— + 2f = cost.

(b) Find a particular solution to the differential equation

d%y 3 2

Hence write down the general solution to this equation.

(c) A solution y(z) to the equation in (b) above satisfies

W0 =% Y0)=—2

Find the explicit form of y(z), and calculate y(1).

4. The Fourier series for a function f(z) with period T is

1 > 2nmx b ) 2nmx
f(z)—-2-a0+nz=lancos( T )-i—nz::lbnsm( T )

(a) Write down formulae for the Fourier coefficients a, and b,..
(b) What can be said about the coefficients a, and b, if f(z) is
(i) odd; (ii) even?

A function f(zx) with period T = 4 is defined by

0 0 <z <1
flzy=4¢1 1 <z <3
0 3 < z < 4

(c) Sketch the graph of the function for three periods.

(d) Calculate the Fourier coefficients. Write down the first four non-zero terms in
the Fourier series.
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5. Let f(z,y) be a real valued function of two variables z and y.

(a) Explain what is meant by a critical point of the function f(z,y).
(b) Describe the possible types of non-degenerate critical point that can occur.

(c) Give a condition in terms of second partial derivatives of f, under which the
critical point is non-degenerate.

Consider the function
f(z,y) = 3z% + 6zy + v* — 9y.

(d) Find all of the first and second order partial derivatives of f.

(e) Verify that fo.fy, — f2, = 36(y —1).
(f) Find and classify the two critical points of f.

6. Suppose you have a function f(z,y) in which the variables x and y are themselves
functions of s and t: i.e. z = z(s,t) and y = y(s, t), such that

F(s’t) = f(x(s’t), y(svt))'

oF
(a) State the extended chain rule, which expresses the partial derivatives — and

P of of Os
e in terms of 3z and — 3y
Now suppose z = scost and y = ssint. Find expressions for:

oF oF of of
(b) 63 and 5 in terms of e and — 3’
() == a.nd—g-g mtermsof%f—and%tﬁ
(d) If a function f(z,y) satisfies the two equations

of L O _ . O Of
Yor TTay =0 Tap tlgy =T Y

write down two partial differential equations in s and ¢ which are satisfied by
the corresponding function F.

(e) Hence find the general form of F'(s,t) in this case.
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7. (a) Explain what is meant by the commutator [L,, Ly of two linear operators L,
and L.

Find expressions for

O |55

d
0 [~ &)
Now consider the three linear operators (acting on a two-dimensional vector)
01 0 —i 1 0
ne(1s)  w=(07) =(6 )

These are the Pauli spin matrices from quantum mechanics.

(d) Show that [Lp, Lo] = 2iL 4.

(e) Find an expression for [La, L¢].
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