University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. LL.B. M.Sci.

Mathematics B3D: Pure Mathematics

COURSE CODE	: MATHB03D
UNIT VALUE	: 0.50
DATE	: 18-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

1

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Consider the following system of linear equations:

 $\begin{array}{rcl} 6w-6x+12y & = & 0 & , \\ 5w-5x+10y & = & 0 & , \\ 3w-3x+6y+2z & = & 6 & . \end{array}$

- (a) Write the system in the form of a matrix equation.
- (b) Use row operations to reduce the system to echelon form. What is the rank of the augmented matrix?
- (c) Find the general solution of the system in the form $\mathbf{a} + \lambda \mathbf{v}_1 + \mu \mathbf{v}_2$ where \mathbf{a} , \mathbf{v}_1 and \mathbf{v}_2 are vectors and λ and μ are scalars.
- (d) Find a vector \mathbf{u} that is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 and is orthogonal to \mathbf{v}_1 . Normalise \mathbf{u} to have unit length.
- 2. For a function f of two variables x and y, describe the possible types of stationary (critical) points that can occur. Describe a test that usually would determine the type of a stationary point.

Consider the function

$$f(x,y) = (x^2 - y^2) e^x$$

By means of a sketch, indicate the regions of the (x,y) plane where f is positive and where f is negative.

Find and identify all the stationary points of f.

MATHB3D

PLEASE TURN OVER

- 3. Explain what is meant by the eigenvectors and eigenvalues of a square matrix A.
 - (a) Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

- (b) Find a matrix V and a diagonal matrix Δ such that $V^{-1}AV = \Delta$. (You need not calculate V^{-1} .)
- (c) Write the equation

а не_н

$$3x^2 + 4xy + 3y^2 + 6z^2 = 1$$

as a matrix equation. Explain how to transform this equation using normalised eigenvectors into an equation of the form

$$aX^2 + bY^2 + cZ^2 = 1$$

and give values for the coefficients a, b and c. (You need not calculate X, Y, Z in terms of x, y, z.)

4. Suppose the variables x and y for a function f(x, y) are themselves functions of s and t: i.e. x = x(s, t) and y = y(s, t). State the chain rule that gives expressions for the partial derivatives $\frac{\partial}{\partial s}$ and $\frac{\partial}{\partial t}$ in terms of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

In what follows, f will denote the function $f(x,y) = (x^2 + y^2) x$.

- (a) Find the partial derivatives f_x , f_y , f_{xx} , f_{yy} , and f_{xy} .
- (b) Making the substitutions $x = r \cos(\theta)$, $y = r \sin(\theta)$, write $F(r, \theta) = f(x, y)$; use the chain rule to find F_r and F_{θ} in terms of r and θ .
- (c) Find $(rF_r)_r$ and $F_{\theta\theta}$, and hence find $r^{-1}(rF_r)_r + r^{-2}F_{\theta\theta}$. Compare this result to $f_{xx} + f_{yy}$.

MATHB3D

CONTINUED

ł,

5. The Fourier series for a function f(x) with period T is

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(2n\pi x/T) + \sum_{n=1}^{\infty} b_n \sin(2n\pi x/T)$$

(a) Write down formulae for the Fourier coefficients a_0, a_n, b_n .

A function f(x) with period T=4 is defined by

$$f(x) = \begin{cases} 0 & -2 \leq x < -1 \\ x & -1 < x < 1 \\ 0 & 1 < x \leq 2 \end{cases}$$

- (b) Sketch the shape of the function for three periods.
- (c) Calculate the Fourier coefficients. Write down the first four non-zero terms in the Fourier series.
- 6. Suppose ϕ is a function of x and y in Cartesian co-ordinates. Give an expression for $\nabla \phi$ in terms of partial derivatives with respect to x and y.

Consider

$$\phi = 1 / (1 + 3x^2 + 4y^2)$$

- (a) Calculate $\nabla \phi$.
- (b) Find a unit vector **n** that points in the direction of most rapid increase of ϕ , (i) at x = 0, y = 1; (ii) at x = 1, y = 1; (iii) at x = 1, y = -1; (iv) at x = -1, y = 0.
- (c) For the vector $\mathbf{v} = 4x\mathbf{i} 3y\mathbf{j}$ calculate $\mathbf{v} \cdot \nabla \phi$.
- (d) Along what lines does $\mathbf{v} \cdot \nabla \phi$ vanish?

MATHB3D

PLEASE TURN OVER

7. Find particular solutions of the differential equation

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = f(t)$$

for (i) $f(t) = 10\sin(t)$, (ii) $f(t) = 9t^2 + 4$.

Find the general solution for y(t) in case (i), and find an expression for $\frac{dy}{dt}$. Hence find the solution in case (i) that satisfies the initial conditions

$$y(0) = 3$$
 , $y'(0) = 0$

MATHB3D

_

END OF PAPER