UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B3D: Pure Mathematics

COURSE CODE	$:$ MATHB03D
UNIT VALUE	$: 0.50$
DATE	$: 30-A P R-03$
TIME	$: 10.00$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let V be the set of vectors \mathbf{x} in \mathbf{R}^{5} satisfying the following system of equations :

$$
\left\{\begin{array}{rl}
x_{1}-x_{2}-x_{4}+x_{5} & =0 \\
x_{1}-x_{2}-x_{3} & =0 \\
x_{1}-x_{2}+x_{3}-2 x_{4}+2 x_{5} & =0
\end{array} .\right.
$$

Find $\operatorname{dim}(V)$ and write down a basis for V.
By applying the Gram-Schmidt process, find an orthonormal basis for V.
2. The Fourier series of the real valued function $f(x)$ defined on $[-\pi, \pi]$ is

$$
f(x) \sim C(f)+\sum_{m \geqslant 1} A_{m}(f) \cos (m x)+\sum_{m \geqslant 1} B_{m}(f) \sin (m x) .
$$

(i) Write down formulae for the Fourier coefficients $C(f), A_{m}(f)$ and $B_{m}(f)$ as integrals involving f.
(ii) Show that $A_{m}\left(x^{2 n}\right)=-\left(\frac{2 n}{m}\right) B_{m}\left(x^{2 n-1}\right)$.
(iii) The Fourier series for the function $f(x)=x$ is

$$
x \sim \sum_{m \geqslant 1}(-1)^{m+1} \frac{2}{m} \sin (m x) ;
$$

Find the constant $C\left(x^{2}\right)$, and hence write down the Fourier series for the function

$$
f(x)=x^{2}
$$

(iv) By integrating term by term, or otherwise, find the Fourier series of the function

$$
f(x)=x^{3}-\pi^{2} x .
$$

3. Find the characteristic polynomial of the matrix $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$. Hence find
(i) an orthogonal basis of eigenvectors of A;
(ii) an invertible 3×3 matrix P such that $P^{-1} A P$ is diagonal.

If the matrix P is not orthogonal, explain briefly how to modify it until it becomes orthogonal.
4. Let $g\binom{x_{1}}{x_{2}}$ be a real valued function of two variables x_{1}, x_{2}.

Explain what is meant by
(i) a critical point of g;
(ii) a nondegenerate critical point.

Describe the possible types of behaviour of g near a nondegenerate critical point.
Let $\quad g\binom{x_{1}}{x_{2}}=6 x_{1}^{3}+x_{2}^{2}+6 x_{1} x_{2}$.
Show that g has a critical point at $\binom{1}{-3}$, and classify it according to type.
Show that g has precisely one other critical point. Find it, and classify it according to type.
5. Find a particular solution to the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=5 \sin (x)-15 \cos (x)
$$

Hence write down the general solution to this equation.
A solution $y(x)$ to the above equation satisfies

$$
y(0)=5 \quad ; \quad y^{\prime}(0)=-5
$$

Find the explicit form of $y(x)$, and also the value of $y^{\prime \prime}(0)$.
6. By means of transformation to polar coordinates

$$
x_{1}=r \cos (\theta) \quad ; \quad x_{2}=r \sin (\theta)
$$

find expressions for the following differential operators in terms of r, θ.
(i) $\frac{\partial}{\partial x_{1}}$;
(ii) $\frac{\partial}{\partial x_{2}}$;
(iii) $x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}$.

A function $f\binom{x_{1}}{x_{2}}$ satisfies the differential equation

$$
\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}\right) f=\left(x_{1}^{2}+x_{2}^{2}\right) \exp \left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)
$$

moreover, it is known that the value of f at $\binom{x_{1}}{x_{2}}$ is independent of θ.
Find the explicit expression for $f\binom{x_{1}}{x_{2}}$ in terms of x_{1}, x_{2} if $f\binom{0}{0}=1$.
7. Explain what is meant by the commutator $\left[L_{1}, L_{2}\right.$] of linear operators L_{1}, L_{2}. Find expressions for
(i) $\left[\frac{d}{d x}, e^{x}\right]$;
(ii) $\left[\frac{d^{2}}{d x^{2}}, e^{x}\right]$.

The angular momentum operator in the (i, j)-plane is

$$
L_{i j}=x_{i} \frac{\partial}{\partial x_{j}}-x_{j} \frac{\partial}{\partial x_{i}}
$$

(iii) Show that $\left[L_{12}, L_{23}\right]=L_{13}$.
(iv) Find also an expression for

$$
\left[x_{1}^{3} \frac{\partial}{\partial x_{2}}, x_{2}^{3} \frac{\partial}{\partial x_{1}}\right]
$$

