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All questions may be attempted but only marks obtained on the best five solutions will 
count. 
The use of an electronic calculator is not  permitted in this examination. 

1. Let V be the set of vectors x in R 5 satisfying the following system of equations • 

Xl --=2 --=4 ~-X5 ~--- 0 

Xl - -=2 --=3 ~ 0 

Xl -x~ +x3 -2x~ +2z5 = 0 

Find dim(V) and write down a basis for V. 

By applying the Gram-Schmidt process, find an orthonormal basis for V. 

2. The Fourier series of the real valued hmction f (x)  defined on [-~r, ~] is 

f i  x) ~ C(f)  + E dm(f)cos(mx) + E Bm(f) sin(mx). 

(i) Write down formulae for the Fourier coefficients C(f) ,  A ~ ( f )  and B,~(f) as 
integrals involving f .  

(ii) Show that  A,~(x 2n) = - (-~) B,~(x2~-l). 

(iii) The Fourier series for the function f(x) = x is 

x ~" E(- -1)m+l£s in(mx);  
m 

m ~ I  

Find the constant C(x2), and hence write down the Fourier series for the function 

f ( = )  = x 2 

(iv) By integrating term by term, or otherwise, find the Fourier series of the function 

f ( = )  = =3 _  2x. 
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3. Find the characteristic polynomial of the matrix A ---- 

Hence find 

0 1 1 )  
1 1 0 . 

1 0 1 

(i) an orthogonal basis of eigenvectors of A ; 

(ii) an invertible 3 × 3 matrix P such that P-lAP is diagonal. 

If the matrix P is not orthogonal, explain briefly how to modify it until it becomes 
orthogonal. 

. ( ~ )  be real valued function of two variables Let g ~2 a Xl~ x2.  

Explain what is meant by 

(i) a critical point of g ; 

(ii) a nondegenerate critical point. 

Describe the possible types of behaviour of g near a nondegenerate critical point. 

xl ) = 6x~+x~+6xlx2. Let g x2 

~ o ~  ~ ~ ha~ ~ c~i~c~,.o~o~ ~ ( _ ~ ) ,  a~d c~s~y  i~ ~ o r ~ o ~  to ~ e .  

Show that g has precisely one other critical point. Find it, and classify it according 
to type. 

5. Find a particular solution to the differential equation 

d2y dy 
dx ~ + ~xx - 6y = 5sin(x) - 15cos(x). 

Hence write down the general solution to this equation. 

A solution y(x) to the above equation satisfies 

y ( o )  = 5 ~ y ' ( 0 )  = - 5 .  

Find the explicit form of y(x), and also the value of y"(0). 
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6. By means of transformation to polar coordinates 

X 1 : rcos(0)  ; X 2 : r s in(0) ,  

find expressions for the following differential operators in terms of r, 0. 

0 0 0 0 
(i) (i~) (~) x l - z - +  x~ 

Oxl ' OX2 ' OX2 " oxl 

(Xl~I-~-X2£) f-n-(X2--[-X~) exP(V~l-[-x2); 

m°re°ver' it is kn°wn that the value °f f at ( Xl l is independent °f 

( )  (o) Find the explicit expression for f xl in terms of xl, x2 if f 0 = 1. 
X2 

7. Explain what is meant by the commutator [ L1 , L2 ] of linear operators L1, L2. 

Find expressions for 

(i) [ d ; (ii) [ d2 e~ " 

The angular momentum operator in the (i, j ) -plane is 

0 0 
Lii = x~ Ox i xj  Oxi" 

(iii) Show that  [ L12, L23 ] = L13. 

(iv) Find also an expression for 

I X  0 3 0 lgx-~, x~-£ ]. 
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