UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B3D: Pure Mathematics

COURSE CODE	: MATHB03D
UNIT VALUE	: 0.50
DATE	: 30-APR-03
TIME	: 10.00
TIME ALLOWED	: 2 Hours

03-C0901-3-40 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. Let V be the set of vectors \mathbf{x} in \mathbf{R}^5 satisfying the following system of equations :

ſ	x_1	$-x_2$		$-x_4$	$+x_{5}$	=	0
ł	x_1	$-x_2$	$-x_3$			=	0
J	x_1	$-x_2$	$+x_{3}$	$-2x_{4}$	$+2x_{5}$	=	0

Find $\dim(V)$ and write down a basis for V.

By applying the Gram-Schmidt process, find an orthonormal basis for V.

2. The Fourier series of the real valued function f(x) defined on $[-\pi,\pi]$ is

$$f(x) \sim C(f) + \sum_{m \ge 1} A_m(f) \cos(mx) + \sum_{m \ge 1} B_m(f) \sin(mx).$$

(i) Write down formulae for the Fourier coefficients C(f), $A_m(f)$ and $B_m(f)$ as integrals involving f.

- (ii) Show that $A_m(x^{2n}) = -\left(rac{2n}{m}
 ight) B_m(x^{2n-1}).$
- (iii) The Fourier series for the function f(x) = x is

$$x \sim \sum_{m \ge 1} (-1)^{m+1} \frac{2}{m} \sin(mx);$$

Find the constant $C(x^2)$, and hence write down the Fourier series for the function

$$f(x) = x^2.$$

(iv) By integrating term by term, or otherwise, find the Fourier series of the function

$$f(x) = x^3 - \pi^2 x.$$

PLEASE TURN OVER

MATHB03D

3. Find the characteristic polynomial of the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Hence find

- (i) an orthogonal basis of eigenvectors of A;
- (ii) an invertible 3×3 matrix P such that $P^{-1}AP$ is diagonal.

If the matrix P is not orthogonal, explain briefly how to modify it until it becomes orthogonal.

4. Let $g\begin{pmatrix} x_1\\ x_2 \end{pmatrix}$ be a real valued function of two variables x_1, x_2 .

Explain what is meant by

- (i) a critical point of g;
- (ii) a nondegenerate critical point.

Describe the possible types of behaviour of g near a nondegenerate critical point.

Let
$$g\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = 6x_1^3 + x_2^2 + 6x_1x_2.$$

Show that g has a critical point at $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$, and classify it according to type. Show that g has precisely one other critical point. Find it, and classify it according to type.

5. Find a particular solution to the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 5\sin(x) - 15\cos(x).$$

Hence write down the general solution to this equation. A solution y(x) to the above equation satisfies

$$y(0) = 5$$
; $y'(0) = -5$.

Find the explicit form of y(x), and also the value of y''(0).

MATHB03D

CONTINUED

6. By means of transformation to polar coordinates

¥

$$x_1 = r\cos(\theta)$$
; $x_2 = r\sin(\theta)$,

find expressions for the following differential operators in terms of r, θ .

(i)
$$\frac{\partial}{\partial x_1}$$
; (ii) $\frac{\partial}{\partial x_2}$; (iii) $x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$.
A function $f\begin{pmatrix}x_1\\x_2\end{pmatrix}$ satisfies the differential equation
 $\left(x_1\frac{\partial}{\partial x_1} + x_2\frac{\partial}{\partial x_2}\right)f = (x_1^2 + x_2^2)\exp(\sqrt{x_1^2 + x_2^2});$

moreover, it is known that the value of f at $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is independent of θ . Find the explicit expression for $f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ in terms of x_1, x_2 if $f\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$.

7. Explain what is meant by the *commutator* $[L_1, L_2]$ of linear operators L_1, L_2 . Find expressions for

(i)
$$\left[\frac{d}{dx}, e^x\right]$$
; (ii) $\left[\frac{d^2}{dx^2}, e^x\right]$.

The angular momentum operator in the (i, j)-plane is

$$L_{ij} = x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i}.$$

- (iii) Show that $[L_{12}, L_{23}] = L_{13}$.
- (iv) Find also an expression for

$$\left[x_1^3 \frac{\partial}{\partial x_2} , x_2^3 \frac{\partial}{\partial x_1} \right].$$

MATHB03D

END OF PAPER