UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

5

é

Mathematics B3D: Pure Mathematics

COURSE CODE	:	MATHB03D
UNIT VALUE	:	0.50
DATE	:	03-MAY-02
TIME	:	14.30
TIME ALLOWED	:	2 hours

02-C0900-3-40

© 2002 University of London

~

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count. The use of an electronic calculator is **not** permitted in this examination.

1. Let V be the set of vectors $\mathbf{x} \in \mathbb{R}^5$ satisfying the following system of equations

$$\begin{cases} x_1 + x_2 & -x_3 & -x_4 & = 0 \\ x_1 + x_2 & +x_4 & +x_5 & = 0 \end{cases}$$

Find dim (V) and write down a basis for V.

By applying the Gram-Schmidt process, find an orthonormal basis for V.

2. The Fourier series of a real valued function f defined on $[-\pi, \pi]$ is

$$f(x) = C(f) + \sum_{m \ge 1} A_m(f) \cos(mx) + \sum_{m \ge 1} B_m(f) \sin(mx).$$

- i) Write down the formulae which express the Fourier coefficients $A_m(f)$, $B_m(f)$, C(f) as integrals involving f.
- ii) Show that

$$B_m(x^{2n+1}) = (-1)^{m+1} \frac{2\pi^{2n}}{m} + \left(\frac{2n+1}{m}\right) A_m(x^{2n}).$$

- iii) What can one say about $A_m(x^{2n+1}), C(x^{2n+1})$?
- iv) The Fourier series of $f(x) = x^2$ is

$$x^{2} = \frac{\pi^{2}}{3} + \sum_{m \ge 1} (-1)^{m} \frac{4}{m^{2}} \cos(mx).$$

Find the Fourier series of $g(x) = x^3$.

3. Find an orthogonal basis for \mathbb{R}^3 consisting of eigenvectors of the following matrix

$$A = \begin{pmatrix} 3 & 5 & 0 \\ 5 & 3 & 12 \\ 0 & 12 & 3 \end{pmatrix}$$

Hence find an invertible matrix P such that $P^{-1}AP$ is diagonal. If your matrix P is not orthogonal, show how to modify it until it becomes orthogonal.

MATHB3D

4. If $f\begin{pmatrix} x_1\\ x_2 \end{pmatrix}$ is a real valued function of two real variables x_1, x_2 , explain what is meant by saying that

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is a nondegenerate critical point of f .

List the possible types of nondegenerate critical points, together with numerical criteria which allow one to distinguish between them.

Let
$$f\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \exp(x_1^2 + x_1x_2 + x_2^2 + 3x_1).$$

Show that f has precisely one critical point. Find it. Show it is nondegenerate and find its type.

- 5. Explain what is meant by the commutator $[L_1, L_2]$ of linear operators L_1, L_2 . Find expressions for
 - i) $\left[\begin{array}{c} \frac{d}{dx}, x^2 \end{array} \right];$ ii) $\left[\begin{array}{c} \frac{d^2}{dx^2}, \exp(x) \end{array} \right];$ iii) $\left[\begin{array}{c} x_1^3 \frac{\partial}{\partial x_2}, x_2^3 \frac{\partial}{\partial x_1} \end{array} \right];$ iv) $\left[\begin{array}{c} x_1 \frac{\partial}{\partial x_2}, x_2 \frac{\partial}{\partial x_3} \end{array} \right].$
- 6. Find a particular solution to the differential equation

$$\frac{d^2y}{dx^2} + \frac{3dy}{dx} - 10y = 10x^3 - 9x^2 + 4x - 3.$$

Hence write down the general solution.

A solution y(x) to the above equation satisfies

$$y(0) = 7$$
; $y'(0) = -1$.

Write down the explicit form of y(x), and calculate

i) y(1) and ii) y''(0).

MATHB3D

CONTINUED

7. By means of transformation to polar coordinates

$$x_1 = r\cos(\theta)$$
; $x_2 = r\sin(\theta)$

find expressions for the following differential operators:

i)
$$\frac{\partial}{\partial x_1}$$
; ii) $\frac{\partial}{\partial x_2}$; iii) $x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}$.

A function $f\begin{pmatrix} x_1\\ x_2 \end{pmatrix}$ takes the form

$$f\binom{x_1}{x_2} = r^2 h(\theta)$$

and satisfies

ţ

$$\left(x_1\frac{\partial}{\partial x_2}-x_2\frac{\partial}{\partial x_1}\right)f\begin{pmatrix}x_1\\x_2\end{pmatrix}=x_1^2+x_2^2.$$

Find $h(\theta)$ if $f\begin{pmatrix}1\\0\end{pmatrix} = \pi$

MATHB3D

END OF PAPER