All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Evaluate the indefinite integrals

$$
\text { (i) } \int x(2-x)^{6} \mathrm{~d} x, \quad \text { (ii) } \int e^{x} \sin x \mathrm{~d} x \text {. }
$$

(b) Find A, B, C, D such that

$$
\frac{2 x^{4}-x^{3}+x^{2}+x+1}{x\left(1+x^{2}\right)(x-1)^{2}}=\frac{A}{x}+\frac{B x+C}{1+x^{2}}+\frac{D}{(x-1)^{2}} .
$$

Hence, or otherwise, find

$$
\int_{2}^{3} \frac{2 x^{4}-x^{3}+x^{2}+x+1}{x\left(1+x^{2}\right)(x-1)^{2}} \mathrm{~d} x .
$$

2. Consider the function

$$
y(x)=\frac{x^{3}}{x-4} .
$$

(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) Find the turning points of y and determine whether they are maxima, minima or points of inflexion.
(c) Find all asymptotes of the curve $y(x)$.
(d) Sketch the function $y(x)$ being careful to show any turning points and asymptotes.
3. (a) Let $z=x+i y$ where i is the complex number $i=\sqrt{-1}$. Define \bar{z}, the complex conjugate of z, and $|z|$ the modulus of z.
(b) When $x=-\frac{1}{2}$ and $y=\frac{\sqrt{3}}{2}$ find:

$$
\text { (i) } \bar{z}, \text { (ii) }|z|^{2}, \text { (iii) } 1+z+z^{2} .
$$

(c) Let $w=\cos \theta+i \sin \theta$. Show that (i) $w+\bar{w}=2 \cos \theta$, (ii) $w-\bar{w}=2 i \sin \theta$ and (iii) $\bar{w}=1 / w$.
(d) State De Moivre's Theorem and show that $w^{k}+\bar{w}^{k}=2 \cos (k \theta)$ for k integer.
(e) Hence, or otherwise, show that

$$
\cos ^{4} \theta=\frac{1}{8}(\cos (4 \theta)+4 \cos (2 \theta)+3),
$$

and find a similar expression for $\sin ^{4} \theta$ in terms of $\cos (4 \theta)$ and $\cos (2 \theta)$.
4. (a) Using the Ratio Test, the Comparison Test, or otherwise, establish which of the following series converge:

$$
\text { (i) } \sum_{n=1}^{\infty} \frac{n+3}{(n+2)^{2}}, \text { (ii) } \sum_{n=1}^{\infty} \frac{n!(n+2)!}{(2 n)!} \text {. }
$$

(b) For $|x|<1$ find the Maclaurin series expansions for up to and including x^{5} for the functions

$$
\text { (i) } x \log _{e}(1-x), \text { (ii) } \tan ^{-1} x
$$

(Hint: In (b) part (ii) you might first consider an integral.)
5. (a) Find the general solution of the differential equation

$$
x y^{2} \frac{d y}{d x}=x^{3}+y^{3} .
$$

Find the solution that satisfies $y(1)=0$.
(b) Find the general solution of the differential equation

$$
\frac{d y}{d x}+\frac{x y}{1+x^{2}}=x
$$

6. (a) Find inverse of the matrix

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
1 & -1 & 1
\end{array}\right)
$$

using the method of cofactors and verify your result.
(b) Find the values of α for which the system

$$
\begin{aligned}
x+2 y & =1 \\
x-y-z & =2 \\
3 y+\alpha z & =-1
\end{aligned}
$$

has a unique solution. Find all solutions when $\alpha=1$.
7. (a) Let $A=\left(\begin{array}{cc}-2 & 4 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ccc}2 & 3 & -1 \\ 0 & 3 & -1\end{array}\right), C=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$.

Evaluate the following matrix multiplications: (i) $A B$, (ii) $B C$ and (iii) A^{2}.
(b) Find all the eigenvalues of the matrices

$$
\text { (i) } \begin{aligned}
&\left(\begin{array}{cc}
1 & 0 \\
-2 & -3
\end{array}\right), \text { (ii) }\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \\
& \text { (iii) } A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

(c) Find an eigenvector for the smallest eigenvalue of the matrix A in (b) part (iii).

