EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.SC. LL.B. M.SCi.

Mathematics B3C: Pure Mathematics

COURSE CODE : MATHB03C

UNIT VALUE : 0.50

DATE : 12-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Evaluate the indefinite integrals

$$
\text { (i) } \int \frac{x+5}{1+x^{2}} \mathrm{~d} x, \quad \text { (ii) } \int x^{2} \log x \mathrm{~d} x
$$

(b) Let $I_{n}=\int_{0}^{\pi} e^{x} \sin (n x) \mathrm{d} x$ for integer n.

Using integration by parts, or otherwise, find an expression for I_{n} in terms of n.
Show that $I_{10}=\frac{10\left(1-e^{\pi}\right)}{101}$.
2. (a) If the complex number $z=x+i y$ (x, y real numbers, $i=\sqrt{-1}$), write down expressions in x, y for

$$
\text { (i) }|z|, \quad \text { (ii) } \arg (z)
$$

Indicate on the Argand diagram how you choose the angle in part (ii).
(b) Let $z_{1}=-1+i, z_{2}=\sqrt{3}+i$. Find $\left|z_{1}\right|,\left|z_{2}\right|, \arg \left(z_{1}\right), \arg \left(z_{2}\right)$. Plot z_{1}, z_{2} on the Argand diagram.
(c) What is the polar form for a complex number. Can every complex number be written in polar form?
(d) Show that if z, w are complex numbers, then $|z w|=|z||w|$ and $\arg (z w)=$ $\arg (z)+\arg (w)$. Hence show that $\left|z^{n}\right|=|z|^{n}$ and that $\arg \left(z^{n}\right)=n \arg (z)$.
(e) Plot all solutions of $z^{4}=-1$ on the Argand diagram.
3. Consider the function

$$
y(x)=\frac{x^{2}+3}{x+1}
$$

(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) Find the turning points of y and determine whether they are maxima, minima or points of inflexion.
(c) Find all asymptotes of the curve $y(x)$.
(d) Sketch the function $y(x)$ being careful to show any turning points and asymptotes.
4. (a) Find the general solution of the differential equation

$$
x \frac{d y}{d x}=y+x y
$$

Find the solution that satisfies $y(1)=2$.
(b) Find the general solution of the differential equation

$$
\frac{d y}{d x}-y \tan x=\cos x
$$

5. (a) Find the determinants of the following matrices

$$
\text { (i) }\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 0 \\
0 & 1 & 2
\end{array}\right) \text {, (ii) }\left(\begin{array}{cccc}
1 & 2 & 0 & 3 \\
4 & 2 & 1 & 0 \\
0 & 1 & 2 & -3 \\
0 & 3 & -2 & 1
\end{array}\right) \text {. }
$$

(b) Find the solution of the system

$$
\begin{aligned}
x+2 y+3 z & =1 \\
2 x+3 y & =2 \\
y+2 z & =-1
\end{aligned}
$$

6. (a) Using the Ratio Test, the Comparison Test, or otherwise, establish which of the following series converge:

$$
\text { (i) } \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \text {, (ii) } \sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} \text {. }
$$

(b) Suppose that $f(x)$ has the Maclaurin series expansion $\sum_{k=0}^{\infty} a_{k} x^{k}$ (which you may assume is valid for all x). Show that

$$
a_{k}=\frac{f^{(k)}(0)}{k!}
$$

Find the Maclaurin series expansions up to and including x^{5} for the functions

$$
\text { (i) } \sinh x \text {, (ii) }(1-x)^{\frac{1}{2}} \text {. }
$$

7. (a) Let $A=\left(\begin{array}{cc}0 & 3 \\ -1 & 5 \\ 3 & -1\end{array}\right), B=\left(\begin{array}{ccc}0 & -1 & 1 \\ -2 & 3 & 1\end{array}\right), C=\left(\begin{array}{ccc}0 & -3 & -6\end{array}\right)$.

Find all possible ways of multiplying 2 of these 3 matrices together and evaluate the result of each multiplication.
(b) Let A be an $n \times n$ matrix. Explain what is meant by an eigenvalue and eigenvector of A, and write down the characteristic polynomial that determines the eigenvalues of A.
(c) Find all the eigenvalues of the matrix

$$
A=\left(\begin{array}{ccc}
1 & -6 & 6 \\
-2 & 5 & -3 \\
-2 & 6 & -4
\end{array}\right)
$$

(d) Find an eigenvector for the largest eigenvalue of A.

