University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. LL.B. M.Sci.

١

Mathematics B3C: Pure Mathematics

COURSE CODE	:	MATHB03C
UNIT VALUE	:	0.50
DATE	:	12-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

04-C0908-3-60 © 2004 University College London

TURN OVER

۱

.

All questions may be attempted but only marks obtained on the best five solutions will count. The use of an electronic calculator is **not** permitted in this examination.

1. (a) Evaluate the indefinite integrals

ÿ

, **X**

(i)
$$\int \frac{x+5}{1+x^2} dx$$
, (ii) $\int x^2 \log x dx$.

(b) Let $I_n = \int_0^{\pi} e^x \sin(nx) \, dx$ for integer *n*. Using integration by parts, or otherwise, find an expression for I_n in terms of *n*.

Show that $I_{10} = \frac{10(1 - e^{\pi})}{101}$.

2. (a) If the complex number z = x + iy $(x, y \text{ real numbers}, i = \sqrt{-1})$, write down expressions in x, y for

(i)
$$|z|$$
, (ii) $\arg(z)$.

Indicate on the Argand diagram how you choose the angle in part (ii).

- (b) Let $z_1 = -1 + i$, $z_2 = \sqrt{3} + i$. Find $|z_1|$, $|z_2|$, $\arg(z_1)$, $\arg(z_2)$. Plot z_1, z_2 on the Argand diagram.
- (c) What is the polar form for a complex number. Can every complex number be written in polar form?
- (d) Show that if z, w are complex numbers, then |zw| = |z||w| and $\arg(zw) = \arg(z) + \arg(w)$. Hence show that $|z^n| = |z|^n$ and that $\arg(z^n) = n\arg(z)$.
- (e) Plot all solutions of $z^4 = -1$ on the Argand diagram.

MATHB03C

PLEASE TURN OVER

ŧ

I

3. Consider the function

ŧ

$$y(x)=\frac{x^2+3}{x+1}.$$

- (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- (b) Find the turning points of y and determine whether they are maxima, minima or points of inflexion.
- (c) Find all asymptotes of the curve y(x).
- (d) Sketch the function y(x) being careful to show any turning points and asymptotes.
- 4. (a) Find the general solution of the differential equation

$$x\frac{dy}{dx} = y + xy.$$

Find the solution that satisfies y(1) = 2.

(b) Find the general solution of the differential equation

$$\frac{dy}{dx} - y\tan x = \cos x.$$

5. (a) Find the determinants of the following matrices

(i)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 4 & 2 & 1 & 0 \\ 0 & 1 & 2 & -3 \\ 0 & 3 & -2 & 1 \end{pmatrix}$.

(b) Find the solution of the system

$$x + 2y + 3z = 1$$

$$2x + 3y = 2$$

$$y + 2z = -1.$$

MATHB03C

CONTINUED

6. (a) Using the Ratio Test, the Comparison Test, or otherwise, establish which of the following series converge:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
, (ii) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$.

(b) Suppose that f(x) has the Maclaurin series expansion $\sum_{k=0}^{\infty} a_k x^k$ (which you may assume is valid for all x). Show that

$$a_k = \frac{f^{(k)}(0)}{k!}.$$

Find the Maclaurin series expansions up to and including x^5 for the functions

(i)
$$\sinh x$$
, (ii) $(1-x)^{\frac{1}{2}}$.

7. (a) Let
$$A = \begin{pmatrix} 0 & 3 \\ -1 & 5 \\ 3 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -1 & 1 \\ -2 & 3 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & -3 & -6 \end{pmatrix}$.

Find all possible ways of multiplying 2 of these 3 matrices together and evaluate the result of each multiplication.

- (b) Let A be an $n \times n$ matrix. Explain what is meant by an eigenvalue and eigenvector of A, and write down the characteristic polynomial that determines the eigenvalues of A.
- (c) Find all the eigenvalues of the matrix

$$A = \left(egin{array}{cccc} 1 & -6 & 6 \ -2 & 5 & -3 \ -2 & 6 & -4 \end{array}
ight).$$

(d) Find an eigenvector for the largest eigenvalue of A.

MATHB03C

, t

END OF PAPER

1