University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B3C: Pure Mathematics

COURSE CODE : MATHB03C

UNIT VALUE $: \mathbf{0 . 5 0}$

DATE : 09-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) By expressing

$$
\frac{1+2 x-x^{2}}{x-x^{3}}=\frac{A}{x}+\frac{B}{1-x}+\frac{C}{1+x}
$$

for suitable constants A, B, C, which you should find, evaluate

$$
\int_{-2}^{2} \frac{1+2 x-x^{2}}{x-x^{3}} \mathrm{~d} x
$$

(b) Evaluate the indefinite integrals

$$
\text { (i) } \int \frac{x}{\sqrt{1+x^{2}}} \mathrm{~d} x \quad \text { (ii) } \int \frac{1}{\sqrt{1+x^{2}}} \mathrm{~d} x .
$$

2. Let $z_{1}=2+3 i$ and $z_{2}=1+i$, where i is the complex number $\sqrt{-1}$.
(a) Find, in the form $a+i b$ (a, b real numbers),

$$
\text { (i) } z_{1}+z_{2}, \quad \text { (ii) } z_{1} z_{2}, \quad \text { (iii) } z_{1} / z_{2}
$$

Now let $z=\cos \theta+i \sin \theta$.
(b) Show that

$$
z^{2}=\cos 2 \theta+i \sin 2 \theta
$$

and state the corresponding formula for z^{n} for n a positive integer.
(c) When $\theta=\pi / 4$ radians, draw the complex numbers $z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}, z^{8}$ on the Argand diagram.
(d) Find all the solutions of $z^{4}+1=0$, explaining how you arrive at your answer.
3. Let $\alpha \neq 0$ and

$$
A=\left(\begin{array}{lll}
1 & \alpha & 1 \\
3 & 1 & 2 \\
4 & 1 & 3
\end{array}\right)
$$

(a) Find the determinant of A in terms of α.
(b) Find the nine cofactors of A.
(c) Hence show that the inverse of A is

$$
A^{-1}=\frac{1}{\alpha}\left(\begin{array}{ccc}
-1 & 3 \alpha-1 & 1-2 \alpha \\
1 & 1 & -1 \\
1 & 1-4 \alpha & 3 \alpha-1
\end{array}\right) \quad(\alpha \neq 0) .
$$

(d) Using part (c) with α chosen appropriately, or otherwise, find the solution to the system

$$
\begin{aligned}
2 x+2 y+2 z & =4 \\
3 x+y+2 z & =0 \\
4 x+y+3 z & =2 .
\end{aligned}
$$

4. Consider the function

$$
y(x)=\frac{x^{3}}{x^{2}-1} .
$$

(a) Find $d y / d x$.
(b) Find the turning points of y and determine whether they are maxima, minima or points of inflexion.
(c) Show that

$$
\frac{d y}{d x} \rightarrow 1 \text { as }|x| \rightarrow \infty
$$

(d) Sketch the function y being careful to show any turning points and asymptotes.
5. (a) Find, by a suitable change of variables, the general solution of the homogeneous differential equation

$$
x^{2} \frac{d y}{d x}=x y-y^{2} .
$$

(b) Find the solution of the differential equation

$$
\frac{d y}{d x}-y=x
$$

which satisfies $y=1$ when $x=0$.
6. Let $a_{0}, a_{1}, a_{2}, \ldots$ be real numbers and consider the series $S=\sum_{k=0}^{\infty} a_{k}$.
(a) What does it mean to say that $S=\sum_{k=0}^{\infty} a_{k}$ converges?
(b) Show that

$$
1+x+x^{2}+x^{3}+\cdots x^{n-1}=\frac{1-x^{n}}{1-x}
$$

and hence find the range of values of x for which the series

$$
\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots+x^{k}+\cdots
$$

converges, and state its value in terms of x.
(c) Show that for $|x|<1$

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{k}}{k}-\cdots=\log (1-x)
$$

(d) Evaluate the sum

$$
\frac{1}{4}-\frac{1}{2\left(4^{2}\right)}+\frac{1}{3\left(4^{3}\right)}+\cdots \frac{(-1)^{k+1}}{k\left(4^{k}\right)}+\cdots
$$

7. The function $f(x)$ has the following Taylor series expansion

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

which you are told is convergent for all x.
(a) Write down a formula for the a_{k} in terms of f and its derivatives and valid for $k=0,1,2, \ldots$
(b) Find the Taylor series expansions for f up to and including x^{5} for the cases

$$
\text { (ii) } f(x)=(1-x)^{-2}, \quad \text { (ii) } f(x)=\cos \left(x^{2}\right) \text {. }
$$

(c) Let f, g be functions such that $f(0)=0=g(0)$ and $f^{\prime}(0), g^{\prime}(0)$ are not both zero. What does L'Hôpital's rule say about the limit

$$
\lim _{y \rightarrow 0} \frac{f(y)}{g(y)} ?
$$

(d) Find the following limits:
(i) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$,
(ii) $\lim _{x \rightarrow \pi} \frac{\sin (x)}{x-\pi}$,
(iii) $\lim _{x \rightarrow 0} \frac{x^{4}}{1-\cos \left(x^{2}\right)}$.

