UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.SC. M.SCi.

Mathematics B3C: Pure Mathematics

COURSE CODE	$:$ MATHB03C
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{1 5 - M A Y - 0 2 ~}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALLOWED	$:$

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Sketch the graph of the function

$$
y=\frac{x^{2}}{1-x^{2}}
$$

clearly indicating intervals of monotonicity, horizontal and vertical asymptotes and approaches to them.
2. (a) What is meant by the Taylor-Maclaurin expansion of a function about $x=0$?
(b) Use the binomial theorem to find the expansion of

$$
\frac{1}{\sqrt{1+x^{2}}}
$$

as far as the term in x^{6}.
(c) Using L'Hôpital's rule or otherwise evaluate
(i) $\lim _{x \rightarrow \pi / 2} \frac{2 x-\pi}{\cos x}$
(ii) $\lim _{x \rightarrow 0} \frac{\arctan (x)-x}{x^{3}}$
(iii) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}$
3. Express

$$
\frac{3 t^{2}+7 t+4}{(t+3)\left(t^{2}+1\right)}
$$

in the form

$$
\frac{A}{t+3}+\frac{B t+C}{t^{2}+1}
$$

for suitable constants A, B, C.
Find the integral

$$
\int_{0}^{1} \frac{3 t^{2}+7 t+4}{(t+3)\left(t^{2}+1\right)} d t
$$

4. (a) State de Moivre's Theorem and use it to express $(1+i \sqrt{3})^{14}$ in the form $a+i b$.
(b) Determine the solutions to the equation $z^{6}=1$ and sketch them in the Argand Diagram.
5. (a) Find constants A, B so that $\frac{1}{n^{2}-1}=\frac{A}{n-1}+\frac{B}{n+1}$, use this to simplify the partial sums $s_{N}=\sum_{n=2}^{N} \frac{1}{n^{2}-1}$ and so find

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}
$$

(b) Find the precise range of the values for which the series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{4^{n} n}
$$

converges.
6. (a) Find the inverse of the matrix

$$
\left(\begin{array}{rrr}
2 & 1 & -1 \\
-3 & 0 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

(b) Find the general solution to the system of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}+x_{4}=2 \\
3 x_{1}+7 x_{2}-x_{3}+2 x_{4}=6 \\
x_{1}+x_{2}-3 x_{3}+5 x_{4}=-4 \\
x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=-4
\end{array}
$$

7. (a) Find the general solution to the differential equation

$$
\frac{d y}{d x}+\frac{y}{x}=\cos (x)
$$

Find the explicit solution which takes value zero when $x=\pi$.
(b) A radioactive material has a half-life of 7 years. If 1 kilogram of this material was placed in a safe on 1 January 1975, how much will be left at the end of this year?

