UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
M.Sci.

Mathematics M254: Problem-solving in Pure Mathematics

COURSE CODE
: MATHM254

UNIT VALUE
: 0.50

DATE
: 03-MAY-02

TIME
: 10.00

TIME ALLOWED : 3 hours

02-C0954-3-30
© 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. For each natural number n evaluate the determinant

$$
\left|\begin{array}{ccccc}
\binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \binom{3}{0} & \cdots
\end{array}\binom{n}{0}\right|
$$

2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function differentiable at every point of \mathbb{R}.
(a) Show that f^{\prime} does not have to be continuous.
(b) Show that for every $a<b$ and every c lying between $f^{\prime}(a)$ and $f^{\prime}(b)$ there is $a<\xi<b$ so that $f^{\prime}(\xi)=c$.
3. Let $x \neq 0$ be a real number such that $\{x\}+\left\{\frac{1}{x}\right\}=1$. For each integer n find $\left\{x^{n}\right\}+\left\{\frac{1}{x^{n}}\right\}$. (Here $\{x\}$ denotes the fractional part of x, i.e. $0 \leq\{x\}<1$ and $x-\{x\}$ is an integer.)
4. Suppose that $g, h:[0,1] \rightarrow[0,1]$ are continuous strictly increasing functions such that $g(0)=h(0)=0$ and $g(1)=h(1)=1$. Show that there are $a, b \in[0,1]$ so that $g(b)-g(a)=h(b)-h(a)=1 / 2$.
5. We say that $P=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ is a partition of a positive integer n if $n_{1} \leqslant n_{2} \leqslant$ $\ldots \leqslant n_{k}$ are positive integers such that $n=n_{1}+n_{2}+\ldots+n_{k}$. A partition P of n is good if every integer $1 \leq i \leq n$ has a unique partition which consists of the elements of P only. (For instance, $\{1,2,2\}$ is a good partition of 5 but $\{1,1,2\}$ is not a good partition of 4 since $2=2=1+1$.)
Prove that $\{1,1, \ldots, 1\}$ is the only good partition of n if and only if $n+1$ is prime.
