University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics C393: Probability

COURSE CODE : MATHC393

UNIT VALUE $\quad: \quad 0.50$

DATE : 20-MAY-04

TIME $\quad: \mathbf{1 0 . 0 0}$

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove the two Borel-Cantelli Lemmas.
(b) Suppose $\left(A_{n}\right)_{n=1}^{\infty}$ are events such that $\mathbb{P}\left(A_{n}\right.$, i.o. $)=0$. Must it be the case that $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$?
(c) Suppose $\left(A_{n}\right)_{n=1}^{\infty}$ are events such that $\mathbb{P}\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Must we have $\mathbb{P}\left(A_{n}\right.$, i.o. $)=0$?
(d) Suppose X_{1}, X_{2}, \ldots are independent random variables such that X_{n} is uniformly distributed on $[0, n]$ for every n. Prove that $\mathbb{P}\left(X_{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)=0$.
(e) Suppose $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ are independent random variables such that X_{n} and Y_{n} are uniformly distributed on $[0, n]$ for every n. Prove that $\mathbb{P}\left(X_{n}+Y_{n} \rightarrow\right.$ ∞ as $n \rightarrow \infty)=1$.
2. (a) State what it means for two σ-algebras \mathcal{F}_{1} and \mathcal{F}_{2} to be independent. What does it mean for two random variables X and Y to be independent?
(b) Prove that if X, Y are independent random variables in \mathcal{L}^{1} then $X Y \in \mathcal{L}^{1}$ and $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$.
(c) Suppose that X and Y are random variables such that $\mathbb{E}(X Y)=\mathbb{E} X \mathbb{E} Y$. Must X and Y be independent?
(d) Prove that if X_{1}, \ldots, X_{n} are independent then $\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)$.
(e) Suppose X_{1}, \ldots, X_{n} are independent random variables with $\mathbb{E} X_{i}=0$ for every i and $\sum_{i=1}^{n} X_{i}=0$. Prove that $\mathbb{P}\left(X_{i}=0\right)=1$ for every i.
3. (a) Prove that if T_{1} and T_{2} are independent π-systems then $\sigma\left(T_{1}\right)$ and $\sigma\left(T_{2}\right)$ are independent. [You may assume that if two probability measures agree on a π-system \mathcal{C} then they agree on $\sigma(\mathcal{C})$.]
(b) Prove that if X_{1}, X_{2}, \ldots are independent random variables and $n>1$ then $\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\sigma\left(X_{n+1}, X_{n+2}, \ldots\right)$ are independent.
(c) Suppose that X_{1}, X_{2}, \ldots are random variables and $\sigma\left(X_{1}, \ldots, X_{n}\right)$ is independent from $\sigma\left(X_{n+1}\right)$ for every n. Must X_{1}, X_{2}, \ldots be independent?.
(d) Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ be σ-algebras. Define the tail σ-algebra. State and prove Kolmogorov's 0-1 Law.
4. (a) Let X be a random variable with mean 0 and variance 1 . Define the characteristic function ϕ of X and prove that ϕ is C^{2}, with $\phi^{\prime}(0)=0$ and $\phi^{\prime \prime}(0)=-1$.
(b) Let $\left(X_{n}\right)_{n=1}^{\infty}$ be an IID sequence of random variables with the same distribution as X, and define Y_{n} by

$$
Y_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}
$$

Find the characteristic function ϕ_{n} of Y_{n} in terms of the characteristic function ϕ of X.
(c) Prove that $\phi_{n}(t) \rightarrow e^{-t^{2} / 2}$ uniformly on bounded intervals of \mathbb{R}. [You may assume that the principal value of the logarithm satisfies $|\log (1+z)-z| \leq|z|^{2}$ for $|z|<1 / 2$.]
5. Write an essay on martingales.

