UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C393: Probability

COURSE CODE	: MATHC393
UNIT VALUE	: 0.50
DATE	: 22-MAY-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0930-3-40 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove the two Borel-Cantelli Lemmas.

(b) Prove that if K > 0 is a real number, and X_1, X_2, \ldots are random variables such that $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^4 < K$ for every *i*, then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\to 0 \text{ as } n\to\infty\right)=1.$$

(c) Let X_1, X_2, \ldots be random variables such that

$$X_n = \begin{cases} n^2 - 1 & \text{with probability } 1/n^2 \\ -1 & \text{with probability } 1 - 1/n^2 \end{cases}$$

for every *n*. Prove that $\mathbb{E}X_n = 0$ for every *n*, but

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\to -1 \text{ as } n\to\infty\right)=1.$$

[Hint: Show that, with probability 1, all but finitely many X_n are equal to -1.]

2. (a) Define the term π -system.

(b) Prove that if two probability measures agree on a π -system then they agree on the σ -algebra it generates.

(c) Let P_1 and P_2 be two probability measures on the measurable space (Ω, Σ) . Let $\mathcal{F} = \{X \in \Sigma : P_1(X) = P_2(X)\}$. Must P_1 and P_2 agree on $\sigma(\mathcal{F})$?

MATHC393

PLEASE TURN OVER

3. (a) State what it means for two σ -algebras \mathcal{F} and \mathcal{G} to be independent. What does it mean for two random variables X and Y to be independent?

(b) Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be a sequence of σ -algebras. Define a *tail event*. State and prove Kolmogorov's 0-1 Law.

[You may assume that if T_1 and T_2 are independent π -systems then $\sigma(T_1)$ and $\sigma(T_2)$ are independent.]

(c) Let X_1, X_2, \ldots be an independent sequence of random variables, and let $S_n = \sum_{i=1}^n X_i$. Suppose that S_n/n converges almost surely as $n \to \infty$. Prove that there is some number a such that $S_n/n \to a$ almost surely.

[Hint: Let $L = \lim_{n \to \infty} S_n/n$. For each real number a, consider the event $(L \ge a)$.]

- 4. (a) Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, X an integrable random variable and $\mathcal{F} \subset \Sigma$ a σ -algebra. Define what it means for a function f to be a version of the conditional expectation $\mathbb{E}(X|\mathcal{F})$. Prove that the conditional expectation exists, and that if fand g are versions of the conditional expectation then f = g almost surely.
 - (b) Define the terms filtration, submartingale, martingale and stopping time.
 - (c) State and prove the Optional Stopping Theorem.
 - (d) Prove that if $(X_k)_{k=1}^{\infty}$ is a nonnegative submartingale then

$$\mathbb{E}X_n \ge t \mathbb{P}(\max_{0 \le k \le n} X_k \ge t).$$

5. Write an essay on the Central Limit Theorem.

MATHC393