UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.SC. M.SCi.

Mathematics C393: Probability

COURSE CODE : MATHC393

UNIT VALUE : 0.50

DATE : 20-MAY-02

TIME : 14.30

TIME ALLOWED : 2 hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove the two Borel-Cantelli Lemmas.
(b) Suppose that $\left(X_{n}\right)_{n=1}^{\infty}$ is a sequence of random variables such that, for every $\epsilon>0$,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right|>\epsilon\right)<\infty
$$

Prove that $X_{n} \rightarrow 0$ almost surely.
(c) State and prove Chebyshev's Inequality.
(d) Let $\left(X_{n}\right)_{n=1}^{\infty}$ be independent random variables with mean 0 and variance 1 . Prove that if $\alpha>1 / 2$ then

$$
\frac{X_{n}}{n^{\alpha}} \rightarrow 0 \text { almost surely. }
$$

2. (a) Let $\left(\mathcal{F}_{n}\right)_{n=1}^{\infty}$ be an independent sequence of σ-algebras. Show that $\sigma\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)$ and $\sigma\left(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, \ldots\right)$ are independent. [You may assume that if two π-systems are independent then so are the σ-algebras they generate.]
(b) State and prove Kolmogorov's 0-1 Law.
(c) Define what it means for a sequence $\left(X_{n}\right)_{n=1}^{\infty}$ of random variables to be independent.
(d) Prove that if $\left(X_{n}\right)_{n=1}^{\infty}$ is an independent sequence of random variables then either $\left(X_{n}\right)_{n=1}^{\infty}$ is bounded almost surely or $\left(X_{n}\right)_{n=1}^{\infty}$ is unbounded almost surely.
3. (a) State Hölder's Inequality for real-valued functions f and g on a probability space ($\Omega, \Sigma, \mathbb{P}$). Deduce that if f and g are in \mathcal{L}^{2} then $f g$ is in \mathcal{L}^{1}.
(b) Prove that if X is a random variable in \mathcal{L}^{r} and $1 \leq p<r$ then X is in \mathcal{L}^{p} and

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq\left(\mathbb{E}|X|^{r}\right)^{1 / r}
$$

(c) Prove that if X and Y are independent random variables in \mathcal{L}^{1} then $X Y \in \mathcal{L}^{1}$. and $\mathbb{E}(X Y)=\mathbb{E} X \cdot \mathbb{E} Y$.
(d) Give an example of random variables X and Y in \mathcal{L}^{1} such that $X Y \notin \mathcal{L}^{1}$:
4. Let $\left(\mu_{n}\right)_{n=1}^{\infty}, \mu$ be probability measures on \mathbb{R} with distributions $\left(F_{n}\right)_{n=1}^{\infty}, F$ and characteristic functions $\left(\phi_{n}\right)_{n=1}^{\infty}, \phi$.
(a) Define what it means to say that $\mu_{n} \rightarrow \mu$ weakly.
(b) Prove that if

$$
\begin{equation*}
\int h d \mu_{n} \rightarrow \int h d \mu \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

for every bounded continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$, then μ_{n} tends weakly to μ.
(c) Prove that if $\phi_{n}(t) \rightarrow \phi(t)$ uniformly on bounded intervals then $\mu_{n} \rightarrow \mu$ weakly. [You may assume Parseval's theorem, and that it is sufficient to prove (1) for C^{2} functions with compact support.]
5. Write an essay on martingales.

