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All questions may  be attempted but only marks  obtained on the best four  solutions will 
count. 
The use of an electronic calculator is not  permit ted  in this examinat ion .  

1. Suppose a function y(t)  has at least m + l  continuous derivatives in the interval 
[a,b], and to is a point in [a,b]. Using Waylor's theorem, write y(t)  as the sum of a 
polynomial of degree m in t-to and a remainder term. 

Consider the initial value problem 

d y / d t  = f ( y )  , y(to) = yo 

A one-step numerical scheme to estimate the solution at points t~-=to+nh can be 
written in the form 

Y~+I = y~ + hG(y,~,t~; h) , 

where y~ is the estimate of y(t,O, and h is the constant step length. 

(a) Write down the second order Taylor scheme (Taylor2) in terms of f ( y )  and 
its derivative, and a general form for the second order Runge-Kutta method 
(RK2). Why is the Taylor scheme seldom used in practice? 

By comparing these two schemes, or otherwise, find constraints on the param- 
eters in the RK2 scheme, and deduce that there is a one parameter family of 
RK2 schemes. 

(b) The truncation error is defined as 

Tn = (y(tn+l) - y ( t n ) ) / h  - G ( y ( t n ) , t ~ ; h )  

Find expressions for Tn to O(h 2) in terms of f ( y )  and its derivatives for 

(i) Taylor2, and 

(ii) RK2. 

(c) For the particular case f ( y )  = y2, find expressions for these two versions of Tn 
as functions of y. Which method is likely to be more accurate in this case? 
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2. The  forward difference operator  A is defined as Ay,, _-- Yn+l -- Y~. 

Wri te  down an expression for A2yn.  

(a) Consider the  difference equation 

Y,~+2 - yn+l - 2y,~ = - 2  

(i) F ind the general solution for y~. 

(ii) Find the solution when the initial conditions are Y0 = 0 and Ay0 ---- 2 . 
Describe what  might  happen if the solution is calculated numerically using 
jus t  the  initial condi t ions  and the difference equation. 

(b) Consider the  initial value problem 

d y / d t  = - y / a  , y(0) = 1 , where a is a positive constant. 

Wi th  step length h, Euler 's  me thod  for the  numerical solution is 

A y n  = -- h y J a  

Find the  solution of this difference equation, with Y0 = 1 . Describe the  
behaviour  for various ranges of values of h: e.g. h < <  a, h ---- a, etc. 

Compare  this solution with the  exact solution of the differential equation. 

3. Consider  the ordinary  differential equation 

d y / d t  = f ( y , t )  

Two possible a lgori thms for es t imat ing the solution at the points t~ = to + n h  are 

(A) yn+l = y~ + h f ~  

and 
( B )  yn+l = y~ + ( h / 2 ) ( f n  + f~+~) , 

where  fn  = f ( y n ,  t~) . 

(a) W h a t  types of me thods  are these (i.e. explicit, single-step, ...)? Discuss their  
likely advantages and  disadvantages. 

(b) Define the  growth factor  for the  error e,, tha t  arises when calculating solutions 
numerical ly  using such algorithms. By considering the special case f -- Ay, 
where A is a real constant ,  analyse the stability of schemes (A) and (B), giving 
a range of values of Ah for which each scheme is stable. 
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(c) The  above me thods  can be combined  in a p red ic to r -cor rec to r  scheme of the 
form 

y~+~ = yn + hf~ 

y,~+l = yn + (h /2)  (f,, + f*+ l )  ; 

where /*+1  = f(Y*+l, tn+l) • 

With  f -- Ay as before, analyse the  s tabi l i ty  of  th is  new scheme.  

4. Consider a function f ( x )  which has a real roo t  at x --- r.  Suppose  an a lgor i thm 
provides successive es t imates  Xo, Xl, ...,x~, ... for t he  roo t  r.  In  t e rms  of the  error 
cn = xn - r,  define wha t  is meant  by the  order  of convergence  of the  a lgor i thm.  

(a) Describe the Newton-Raphson  (N-R) m e t h o d  for f inding a root  of f ( x ) ,  which 
uses information abou t  the  derivative d f / d x .  I l lus t r a t e  your  descr ipt ion with 
a sketch. Wha t  difficulties can arise wi th  this m e t h o d ?  

(b) For f ( x )  = a + x2e x, analyse the  convergence of t h e  N-R  m e t h o d  

(i) when a = - 4  (you may  assume the  root  is pos i t ive  in this  case), and  

(ii) when a = 0 .  (Hint: simplify the  a lgor i thm first by  p u t t i n g  in the  funct ional  
forms for f and d f / d x . )  

Why is the  order of convergence different in these  two cases? 

(c) For the  case a -- 0, subs t i tu te  the  t e rm f ( xn )  in t he  N-R m e t h o d  by 7 f (xn ) ,  
where ~/ is a constant .  Find a value for -~ t h a t  wou ld  increase the  order  of 
convergence of the  modified scheme. 
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5. Suppose da ta  values (xn, yn) are given for n = 0, ..., N. 

(a) Discuss (without  details) the main  advantages and disadvantages of using a 
single polynomial  PN(X) to interpolate such data. 

(b) Find coefficients such tha t  Pa(x) fits the four data  points (-1,4), (0,1), (1,0), 
and (2,-5). 

(c) Suppose a function y(x) is at  least M + I  times continuously differentiable in a 
domain  [a, b]. If PM(X) is the  interpolat ing polynomial tha t  fits y at points Xk 
in the  domain for k=0, . . . ,M,  then it can be shown tha t  

e(X) = y ( x ) -  PM(X) = 

M 
y(M+l)(?~) H (  x __ Xk ) / (M + 1)! 

k=0 

(d) 

for some point  77 in the  domain. 

Use this proper ty  to obta in  a formula tha t  bounds [e[ for linear interpolation 
between two points Xo and xl separated by a distance h. 

Consider the  case y(x) = e -~2/2. Suppose you are asked to approximate y 
by using linear interpolat ion with N + I  equally-spaced points in the domain 
[-1,1]. Es t imate  a value of N such tha t  the interpolation error is less than 10 -6 
throughout  this  domain.  

L 
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