UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C311: Methods Of Mathematical Physics I

COURSE CODE : MATHC311

UNIT VALUE $\quad \mathbf{0 . 5 0}$

DATE : 25-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Use the method of variation of parameters to show that

$$
\frac{1}{4} x^{2} e^{-x}[2 \ln x-3]
$$

is a particular integral of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{-x} \ln x \tag{x>0}
\end{equation*}
$$

(b) Determine a function $f(t)$ of the complex variable t and contours C_{1} and C_{2} in the complex t-plane so that

$$
\int_{C_{\mathbf{i}}} e^{x t} f(t) d t \quad(i=1,2)
$$

are non-trivial independent solutions of the differential equation

$$
x \frac{d^{2} y}{d x^{2}}+(2-x) \frac{d y}{d x}-y=0 . \quad(x \geq 0)
$$

Determine two independent solutions in closed form and deduce that only one solution is bounded at $x=0$.
2. When air resistance is ignored, the equation of motion of a simple pendulum is

$$
\frac{d^{2} x}{d t^{2}}=-\sin x
$$

where x is the inclination of the pendulum to the downward vertical. Determine the nature of the singular points in the phase plane and show that the phase ; ajectories are given by

$$
y^{2}=2 \cos x+c
$$

where $y=d x / d t$ and c is a constant. Sketch the phase trajectories.
If initially $x=0$ and $y=2$, find the value of c and show that the pendulum swings up to the horizontal after time $\ln (1+\sqrt{2})$.
3. It is known that when the constant ϵ is small compared with unity, the equation

$$
\frac{d^{2} x}{d \theta^{2}}+\epsilon \frac{d}{d \theta} F(x)+\lambda(\epsilon) x=0
$$

where $\lambda(\epsilon)$ is a constant which depends on ϵ and $F(x)$ is a regular function, possesses a 2π-periodic solution $x(\theta)$. By seeking a solution in the form:

$$
\begin{aligned}
x(\theta) & =x_{0}(\theta)+\epsilon x_{1}(\theta)+\epsilon^{2} x_{2}(\theta)+\cdots, \\
\lambda(\epsilon) & =1+\epsilon \lambda_{1}+\epsilon^{2} \lambda_{2}+\cdots,
\end{aligned}
$$

where $x_{n}(\theta+2 \pi)=x_{n}(\theta)$ and $x_{n}^{\prime}(0)=0,(n=0,1, \ldots)$, obtain the differential equations for $x_{0}(\theta)$ and $x_{1}(\theta)$.

For the case when $F(x)=\frac{1}{3} x^{3}-x$, find $x_{0}(\theta)$, if $x_{0}(0)>0$, and show that

$$
\lambda_{1}=0, \quad x_{1}(\theta)=\sin ^{3} \theta+A_{1} \cos \theta
$$

where A_{1} is an undetermined constant. Describe, without detailed calculations, how the constants A_{1} and λ_{2} are determined.
4. Show that the equation

$$
\ddot{x}+\epsilon f(x, \dot{x})+x=0,
$$

where $\epsilon>0$ is a constant and the dot denotes differentiation with respect to t, possesses a solution of the form $x=A(t) \sin [t+\phi(t)]$ if

$$
\begin{aligned}
\dot{A} & =-\epsilon f(A \sin \chi, A \cos \chi) \cos \chi \\
\dot{\phi} & =\epsilon A^{-1} f(A \sin \chi, A \cos \chi) \sin \chi
\end{aligned}
$$

with $\chi=\phi+t$.
If $0<\epsilon \ll 1$, describe a method for finding approximate solutions of these equations.
For the case of Rayleigh's equation, $f(x, \dot{x})=\left(\frac{1}{3} \dot{x}^{2}-1\right) \dot{x}$. If $A(0)=A_{0} \geq 2$ and $\phi(0)=\phi_{0}$, show that $x(t)$ is given approximately by

$$
x(t)=2\left[1+\left(\frac{4}{A_{0}^{2}}-1\right) e^{-\epsilon t}\right]^{-1 / 2} \sin \left(t+\phi_{0}\right)
$$

and deduce that there is a periodic solution for $x(t)$ which is also a limit cycle .
[You may assume that $\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\pi$ and $\int_{0}^{2 \pi} \cos ^{4} \theta d \theta=\frac{3}{4} \pi$.]

5. State without proof a form of Watson's Lemma.

Throughout the interval $a \leq t \leq b$, the function $f(t)$ is continuous and the function $\phi(t)$ is twice-differentiable with a simple maximum at $t=t_{0}$, where $a<t_{0}<b$. Show that as $x \rightarrow+\infty$,

$$
\int_{a}^{b} e^{x \phi(t)} f(t) d t \sim e^{x \phi\left(t_{0}\right)} f\left(t_{0}\right)\left[\frac{2 \pi}{x\left|\phi^{\prime \prime}\left(t_{0}\right)\right|}\right]^{\frac{1}{2}}
$$

How is this result modified when $t_{0}=a$ or $t_{0}=b$?
Hence, or otherwise, verify that as $x \rightarrow+\infty$,
(a) $\quad x!=\int_{0}^{\infty} t^{x} e^{-t} d t \sim \sqrt{(2 \pi x)} x^{x} e^{-x}$,
(b) $\quad \int_{0}^{\pi / 2} t^{3} e^{x \sin t} d t \sim \frac{1}{8} \pi^{3} e^{x} \sqrt{\frac{\pi}{2 x}}$.
[You may assume that $\left(-\frac{1}{2}\right)!=\sqrt{\pi}$.]

