UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٠

¢

Mathematics C311: Methods Of Mathematical Physics I

COURSE CODE	:	MATHC311
UNIT VALUE	:	0.50
DATE	:	25-MAY-06
TIME	:	14.30
TIME ALLOWED	:	2 Hours

06-C1004-3-50 © 2006 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. (a) Use the method of variation of parameters to show that

$$\frac{1}{4}x^2e^{-x}[2\ln x - 3]$$

is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\ln x. \qquad (x > 0)$$

(b) Determine a function f(t) of the complex variable t and contours C_1 and C_2 in the complex t-plane so that

$$\int_{C_i} e^{xt} f(t) dt \qquad (i=1,2)$$

are non-trivial independent solutions of the differential equation

$$x \frac{d^2 y}{dx^2} + (2-x) \frac{dy}{dx} - y = 0.$$
 $(x \ge 0)$

Determine two independent solutions in closed form and deduce that only one solution is bounded at x = 0.

2. When air resistance is ignored, the equation of motion of a simple pendulum is

$$\frac{d^2x}{dt^2} = -\sin x\,,$$

where x is the inclination of the pendulum to the downward vertical. Determine the nature of the singular points in the phase plane and show that the phase b ajectories are given by

$$y^2 = 2\cos x + c\,,$$

where y = dx/dt and c is a constant. Sketch the phase trajectories.

If initially x = 0 and y = 2, find the value of c and show that the pendulum swings up to the horizontal after time $\ln(1 + \sqrt{2})$.

PLEASE TURN OVER

MATHC311

3. It is known that when the constant ϵ is small compared with unity, the equation

$$rac{d^2x}{d heta^2}+\epsilonrac{d}{d heta}F(x)+\lambda(\epsilon)x=0\,,$$

where $\lambda(\epsilon)$ is a constant which depends on ϵ and F(x) is a regular function, possesses a 2π -periodic solution $x(\theta)$. By seeking a solution in the form:

$$\begin{aligned} x(\theta) &= x_0(\theta) + \epsilon x_1(\theta) + \epsilon^2 x_2(\theta) + \cdots, \\ \lambda(\epsilon) &= 1 + \epsilon \lambda_1 + \epsilon^2 \lambda_2 + \cdots, \end{aligned}$$

where $x_n(\theta + 2\pi) = x_n(\theta)$ and $x'_n(0) = 0$, (n = 0, 1, ...), obtain the differential equations for $x_0(\theta)$ and $x_1(\theta)$.

For the case when $F(x) = \frac{1}{3}x^3 - x$, find $x_0(\theta)$, if $x_0(0) > 0$, and show that

$$\lambda_1 = 0$$
, $x_1(\theta) = \sin^3\theta + A_1 \cos\theta$,

where A_1 is an undetermined constant. Describe, without detailed calculations, how the constants A_1 and λ_2 are determined.

4. Show that the equation

$$\ddot{x}+\epsilon f(x,\dot{x})+x=0$$
 ,

where $\epsilon > 0$ is a constant and the dot denotes differentiation with respect to t, possesses a solution of the form $x = A(t) \sin[t + \phi(t)]$ if

$$A = -\epsilon f(A \sin \chi, A \cos \chi) \cos \chi,$$

$$\dot{\phi} = \epsilon A^{-1} f(A \sin \chi, A \cos \chi) \sin \chi,$$

with $\chi = \phi + t$.

If $0 < \epsilon \ll 1$, describe a method for finding approximate solutions of these equations.

For the case of Rayleigh's equation, $f(x, \dot{x}) = (\frac{1}{3}\dot{x}^2 - 1)\dot{x}$. If $A(0) = A_0 \ge 2$ and $\phi(0) = \phi_0$, show that x(t) is given approximately by

$$x(t) = 2 \left[1 + \left(\frac{4}{A_0^2} - 1 \right) e^{-\epsilon t} \right]^{-1/2} \sin(t + \phi_0),$$

and deduce that there is a periodic solution for x(t) which is also a limit cycle.

[You may assume that $\int_0^{2\pi} \cos^2 \theta \, d\theta = \pi$ and $\int_0^{2\pi} \cos^4 \theta \, d\theta = \frac{3}{4}\pi$.]

MATHC311

CONTINUED

5. State without proof a form of Watson's Lemma.

١,

1

Throughout the interval $a \le t \le b$, the function f(t) is continuous and the function $\phi(t)$ is twice-differentiable with a simple maximum at $t = t_0$, where $a < t_0 < b$. Show that as $x \to +\infty$,

$$\int_{a}^{b} e^{x\phi(t)} f(t) dt \sim e^{x\phi(t_{0})} f(t_{0}) \left[\frac{2\pi}{x |\phi''(t_{0})|} \right]^{\frac{1}{2}}$$

.

How is this result modified when $t_0 = a$ or $t_0 = b$? Hence, or otherwise, verify that as $x \to +\infty$,

(a)
$$x! = \int_0^\infty t^x e^{-t} dt \sim \sqrt{2\pi x} x^x e^{-x}$$
,
(b) $\int_0^{\pi/2} t^3 e^{x \sin t} dt \sim \frac{1}{8} \pi^3 e^x \sqrt{\frac{\pi}{2x}}$.

[You may assume that $(-\frac{1}{2})! = \sqrt{\pi}$.]

MATHC311

END OF PAPER