UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics C311: Methods Of Mathematical Physics I

COURSE CODE	:	MATHC311
UNIT VALUE	:	0.50
DATE	:	08-MAY-02
TIME	:	14.30
TIME ALLOWED	:	2 hours

02-C0906-3-40

© 2002 University of London

~

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Verify that the differential equation

$$x^{5} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} - 12y = 0 \qquad (x > 0)$$

does not possess a non-trivial solution in ascending powers of x.

By seeking a solution of the form

$$y = \exp\left[\int K(x)\,dx\right],$$

where $|K(x)| \to \infty$ as $x \to 0 +$, obtain an exact solution of the differential equation which grows exponentially as $x \to 0 +$.

Determine a second independent solution of the differential equation for y, leaving your solution in the form of an integral.

2. Explain what you understand by the terms *centre*, *node*, *spiral point* and *saddle point* in relation to the differential equation

$$\frac{dy}{dx} = \frac{Q(x,y)}{P(x,y)}$$

The equation of motion of a particle is

$$\ddot{x} = k \left(2\cos x - 1 \right) \, \sin x \, ,$$

where k > 0 is a constant. Identify and describe the singular points in the phase plane of x and $y(=\dot{x})$ and show that the equation of the phase trajectories is

$$y^2 = 2k \left[\sin^2 x + \cos x \right] + C \,,$$

where C is a constant. Sketch the phase trajectories and deduce that the particle motion is non-periodic if C>2k.

MATHC311

~

PLEASE TURN OVER

3. Show that the equation

$$\ddot{x} + \epsilon f(x, \dot{x}) + x = 0,$$

where ϵ is a positive constant and the dot denotes differentiation with respect to t, possesses a solution of the form $x = A(t) \sin[t + \phi(t)]$ if

$$A = -\epsilon f(A \sin \chi, A \cos \chi) \cos \chi,$$

$$\dot{\phi} = \epsilon A^{-1} f(A \sin \chi, A \cos \chi) \sin \chi,$$

with $\chi = \phi + t$. If $\epsilon \ll 1$, describe a method for finding approximate solutions of these equations.

For the case of Van der Pol's equation, $f(x, \dot{x}) = (x^2 - 1)\dot{x}$. If $A(0) = A_0 > 0$ and $\phi(0) = \phi_0$, show that x(t) is given approximately by

$$x(t) = 2 \left[1 - (1 - 4/A_0^2) e^{-\epsilon t} \right]^{-1/2} \sin\left(t + \phi_0\right),$$

and deduce the limit cycle solution for x(t).

[You may assume that
$$\int_0^{2\pi} \cos^2 \theta \, d\theta = \pi$$
 and $\int_0^{2\pi} \sin^2 \theta \cos^2 \theta \, d\theta = \frac{1}{4}\pi$.]

4. Show that the differential equation

$$\frac{d^2x}{dt^2} + \epsilon f(x) \frac{dx}{dt} + g(x) = 0, \qquad (\epsilon > 0)$$

where f(x) and g(x) are integrable functions of x and ϵ is a constant, can be expressed in the form

$$rac{dy}{dx} = rac{g(x)}{\epsilon F(x) - y}\,,$$

where $F(x) = \int_0^x f(t) dt$, by means of the transformation

$$\frac{dx}{dt} = y - \epsilon F(x) \,.$$

Assuming that a unique periodic solution x(t) exists with maximum value A and period T for all values of ϵ , show that for a certain closed curve γ in the (x, y) plane,

$$\oint_{\gamma} yf(x)\,dx = 0\,.$$

If $f(x) = \operatorname{sgn}(|x| - 1)$ and g(x) = x, show that when $\epsilon \gg 1$,

$$A \approx 3, \qquad T \approx 2\epsilon \ln 3.$$

MATHC311

CONTINUED

5. (a) State without proof a form of Watson's Lemma. Use the lemma to find two leading terms in the asymptotic expansions of each of the following integrals as $x \to +\infty$:

(i)
$$\int_{-1}^{1} e^{-x(2t-t^2)} dt$$
,
(ii) $\int_{-1}^{1} e^{x(2t-t^2)} \sin \frac{1}{2}\pi(1-t) dt$.

(b) Use the method of stationary phase to show that

$$\int_{-1}^{1} \cos\left[x(t-t^{2})\right] \sin\frac{1}{2}\pi t \, dt \sim \left(\frac{\pi}{4x}\right)^{\frac{1}{2}} \left[\cos\frac{1}{4}x + \sin\frac{1}{4}x\right]$$

as $x \to +\infty$.

MATHC311

END OF PAPER