UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.SC. M.SCi.

Mathematics C311: Methods Of Mathematical Physics I

COURSE CODE : MATHC311

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 08-MAY-02

TIME
: 14.30

TIME ALLOWED : 2 hours

02-C0906-3-40
© 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Verify that the differential equation

$$
x^{5} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-12 y=0 \quad(x>0)
$$

does not possess a non-trivial solution in ascending powers of x.
By seeking a solution of the form

$$
y=\exp \left[\int K(x) d x\right]
$$

where $|K(x)| \rightarrow \infty$ as $x \rightarrow 0+$, obtain an exact solution of the differential equation which grows exponentially as $x \rightarrow 0+$.
Determine a second independent solution of the differential equation for y, leaving your solution in the form of an integral.
2. Explain what you understand by the terms centre, node, spiral point and saddle point in relation to the differential equation

$$
\frac{d y}{d x}=\frac{Q(x, y)}{P(x, y)}
$$

The equation of motion of a particle is

$$
\ddot{x}=k(2 \cos x-1) \sin x,
$$

where $k>0$ is a constant. Identify and describe the singular points in the phase plane of x and $y(=\dot{x})$ and show that the equation of the phase trajectories is

$$
y^{2}=2 k\left[\sin ^{2} x+\cos x\right]+C
$$

where C is a constant. Sketch the phase trajectories and deduce that the particle motion is non-periodic if $C>2 k$.
3. Show that the equation

$$
\ddot{x}+\epsilon f(x, \dot{x})+x=0,
$$

where ϵ is a positive constant and the dot denotes differentiation with respect to t, possesses a solution of the form $x=A(t) \sin [t+\phi(t)]$ if

$$
\begin{aligned}
\dot{A} & =-\epsilon f(A \sin \chi, A \cos \chi) \cos \chi \\
\dot{\phi} & =\epsilon A^{-1} f(A \sin \chi, A \cos \chi) \sin \chi
\end{aligned}
$$

with $\chi=\phi+t$. If $\epsilon \ll 1$, describe a method for finding approximate solutions of these equations.

For the case of Van der Pol's equation, $f(x, \dot{x})=\left(x^{2}-1\right) \dot{x}$. If $A(0)=A_{0}>0$ and $\phi(0)=\phi_{0}$, show that $x(t)$ is given approximately by

$$
x(t)=2\left[1-\left(1-4 / A_{0}^{2}\right) e^{-\epsilon t}\right]^{-1 / 2} \sin \left(t+\phi_{0}\right),
$$

and deduce the limit cycle solution for $x(t)$.
[You may assume that $\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\pi$ and $\int_{0}^{2 \pi} \sin ^{2} \theta \cos ^{2} \theta d \theta=\frac{1}{4} \pi$.]
4. Show that the differential equation

$$
\frac{d^{2} x}{d t^{2}}+\epsilon f(x) \frac{d x}{d t}+g(x)=0, \quad(\epsilon>0)
$$

where $f(x)$ and $g(x)$ are integrable functions of x and ϵ is a constant, can be expressed in the form

$$
\frac{d y}{d x}=\frac{g(x)}{\epsilon F(x)-y}
$$

where $F(x)=\int_{0}^{x} f(t) d t$, by means of the transformation

$$
\frac{d x}{d t}=y-\epsilon F(x)
$$

Assuming that a unique periodic solution $x(t)$ exists with maximum value A and period T for all values of ϵ, show that for a certain closed curve γ in the (x, y) plane,

$$
\oint_{\gamma} y f(x) d x=0 .
$$

If ${ }^{`} f(x)=\operatorname{sgn}(|x|-1)$ and $g(x)=x$, show that when $\epsilon \gg 1$,

$$
A \approx 3, \quad T \approx 2 \epsilon \ln 3
$$

5. (a) State without proof a form of Watson's Lemma. Use the lemma to find two leading terms in the asymptotic expansions of each of the following integrals as $x \rightarrow+\infty$:

$$
\begin{array}{ll}
\text { (i) } & \int_{-1}^{1} e^{-x\left(2 t-t^{2}\right)} d t \\
\text { (ii) } & \int_{-1}^{1} e^{x\left(2 t-t^{2}\right)} \sin \frac{1}{2} \pi(1-t) d t
\end{array}
$$

(b) Use the method of stationary phase to show that

$$
\int_{-1}^{1} \cos \left[x\left(t-t^{2}\right)\right] \sin \frac{1}{2} \pi t d t \sim\left(\frac{\pi}{4 x}\right)^{\frac{1}{2}}\left[\cos \frac{1}{4} x+\sin \frac{1}{4} x\right]
$$

as $x \rightarrow+\infty$.

