University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Mathematics E001: Mathematics

COURSE CODE	$:$ MATHE001
UNIT VALUE	$: 0.50$
DATE	$: 10-M A Y-05$
TIME	$: 10.00$
TIME ALLOWED	$: \mathbf{3}$ Hours

All questions may be attempted but only marks obtained on the best seven solutions will count. The use of an electronic calculator is permitted in this examination.

1. (a) Let $f(x)=x^{2} \cos x$. Find $\frac{d^{11} f}{d x^{11}}$.
(b) A curve is given by the equation $x^{2}-2 x y+2 y^{2}=10$. Find, implicitly, $\frac{d y}{d x}$ and hence find the equation of the normal at $y=1$ which cuts the curve at a positive value of x.
(c) Let $y=\cos t$ and $x=\cos 2 t$. Use parametric differentiation to find $\frac{d y}{d x}$. Check your answer by using trigonometric identities to find a relation between y and x and then differentiating implicitly.
Show

$$
\frac{d^{2} y}{d x^{2}}=-\frac{1}{16 y^{3}}
$$

2. (a) Let $f(x, y)=e^{x} \cos (x y+2)$. Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$.
(b) Let $z=f\left(x y^{2}\right)$ where f is any differentiable function. Show that

$$
2 x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=0
$$

(c) Let $y=\sin ^{-1} x$. Using $\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}$ find $\frac{d y}{d x}$. Find also

$$
\int \sin ^{-1} x d x
$$

3. (a) Find the following integrals:
(i) $\int \frac{13 x+5}{3 x^{2}+5 x-2} d x$,
(ii) $\int_{0}^{\pi / 4} \frac{e^{\tan x}}{\cos ^{2} x} d x$,
(iii) $\int \frac{d x}{\sqrt{4+x^{2}}}$.
(b) If

$$
I_{n}=\int(\ln x)^{n} d x
$$

show using integration by parts that

$$
I_{n}=x(\ln x)^{n}-n I_{n-1}
$$

Hence find

$$
\int(\ln x)^{3} d x
$$

4. Solve the following differential equations
(a) $\left(1+2 y^{2}\right) \frac{d y}{d x}-y \cos x=0, \quad y(0)=1$.
(b) $\cos x \frac{d y}{d x}+y \sin x=\frac{1}{2} \sin 2 x, \quad y(\pi)=0$
5. (a) Express $-1+\sqrt{3} i$ in modulus-argument form. Evaluate $(-1+\sqrt{3} i)^{8}$, expressing your answer in $a+i b$ form.
Find also the square roots of $-1+\sqrt{3} i$ in $a+i b$ form.
(b) Use complex numbers to find

$$
\int_{0}^{\infty} e^{-x} \cos 2 x d x
$$

6. (a) Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=\sin x
$$

(b) Solve the following initial-value problem

$$
y^{\prime \prime}+4 y=e^{x}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

7. (a) Define carefully the dot and vector products of two vectors \mathbf{a} and \mathbf{b}.
(b) Show, using the dot product, that if $\mathbf{c}-\mathbf{d}$ and $\mathbf{c}+\mathbf{d}$ are perpendicular then $|c|=|d|$.
(c) The vectors $\mathbf{a}=\mathbf{i}+2 \mathbf{j}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ form two sides of a triangle. Use vector methods to find the area of the triangle and the angle between \mathbf{a} and \mathbf{b}.
8. (a) Write down the first three non-zero terms in the Maclaurin series of the following functions
(i) $y(x)=\sin (3 x)$;
(ii) $y(x)=e^{x+x^{2}}$.
(b) Find the following limits:
(i) $\lim _{x \rightarrow 0} \frac{1-e^{3 x}}{2 x}$;
(ii) $\lim _{n \rightarrow \infty} \frac{\left(n^{2}+3^{n}\right)^{3}}{3^{3 n+1}+n^{9}}$.
9. (a) Determine whether the following series are convergent or divergent, justifying your answer.
(i) $\sum_{n=0}^{\infty} \frac{n+3}{n^{3}+3 n+1}$,
(ii) $\sum_{n=0}^{\infty} \frac{n}{n+2^{n}}$.
(b) Use the trapezium rule to find an approximate value of the integral

$$
\int_{0}^{2} \sin x d x
$$

by dividing the range of integration into five equal intervals. Compare your result with the exact answer.
10. (a) Write down the binomial distribution for x successes in n independent trials each with probability p of success.
(b) Write down the Poisson distribution with mean μ.
(c) What is the relation between the Poisson distribution and the binomial distribution?
(d) A factory produces identical items. On average, 0.2% of the items are known to be defective. If a random sample of 500 items is inspected, what is the probability of there being no more than 3 defective items?

