EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Eng. M.Eng.

Mathematics E001: Mathematics

COURSE CODE	$:$ MATHE001
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{0 2 - M A Y - 0 3}$
TIME	$: 14.30$
TIME ALLOWED	$: \mathbf{3}$ Hours

All questions may be attempted but only marks obtained on the best seven solutions will count.
The use of an electronic calculator is permitted in this examination.

1. (a) Find the modulus and argument of $z=\frac{1}{2}(1-i)$.

Find z^{8}, expressing your answer in $x+i y$ form.
Find $\sum_{n=0}^{\infty} z^{n}$, expressing your answer in $x+i y$ form.
(b) Let z be a complex number with modulus 1 and argument θ. Show that

$$
z^{n}+z^{-n}=2 \cos n \theta
$$

Show that

$$
\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta) .
$$

Hence find

$$
\int_{0}^{\pi / 3} \cos ^{5} \theta d \theta
$$

2. (a) Define $\sinh x$ and $\cosh x$ in terms of exponentials, and sketch their curves. Prove that

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

(b) Show that

$$
\sinh ^{-1} x=\ln \left[x+\sqrt{x^{2}+1}\right] .
$$

Hence, or otherwise, find

$$
\frac{d}{d x}\left(\sinh ^{-1} x\right)
$$

Find

$$
\int \sinh ^{-1} x d x
$$

3. (a) Differentiate

$$
\text { (i) } x^{\cos x} \quad \text { and } \quad \text { (ii) } x^{2} \cos \left(e^{-x}\right)
$$

(b) Let $x^{3}-4 x+y^{2}+y=2$. Find the equation of the tangent at $x=2$ which touches the curve at a positive value of y.
(c) Let $y=\sec t$ and $x=\tan t$. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ by parametric diffentiation. Using a trigonometric identity, find a relation between y and x. By differentiating this relation, check your answer to $\frac{d y}{d x}$ found above.
For $-\pi / 2<t<\pi / 2$, where does the curve $y=\sec t$ and $x=\tan t$ have a turning point? Is it a maximum, minimum or point of inflection? Justify your answer.
4. Find the following integrals
(i) $\int \frac{x^{2}}{x^{2}-1} d x$,
(ii) $\int_{0}^{2} \frac{1}{\sqrt{x^{2}+4 x}} d x$,
(iii) $\int \frac{1}{x \ln x} d x$,
(iv) $\int e^{-x} \cos x d x$.
5. (a) Define carefully the dot and cross products of two vectors \mathbf{a} and \mathbf{b}.
(b) The vectors $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=\mathbf{j}-3 \mathbf{k}$ form two sides of a triangle. Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$. Find the area of the triangle and the angle between \mathbf{a} and \mathbf{b}.
(c) Given two non-zero vectors \mathbf{c} and \mathbf{d}, show, using the dot product, that if $|\mathbf{c}+\mathbf{d}|=|\mathbf{c}-\mathbf{d}|$ then \mathbf{c} and \mathbf{d} are perpendicular.
6. (a) Let $f(x, y)=x^{2} \exp \left(\frac{x}{y}\right)$. Find $\frac{\partial j}{\partial x}$ and $\frac{\partial f}{\partial y}$.
(b) Let $f(x, y)=x y \cos (x y)$. Verify that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
(c) Let $z=x^{3} f\left(\frac{x}{y}\right)$ where f is any differentiable function. Show that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3 z
$$

7. Solve the following differential equations:
(a) $e^{y^{2}} x \frac{d y}{d x}=y^{-1}, \quad y(1)=2 ;$
(b) $\frac{d y}{d x}-2 y=x^{4} e^{2 x}, \quad y(0)=1$.
8. (a) Find the general solution of the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+5 y=x
$$

(b) Solve the following initial-value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 x}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

9. (a) Find the following limits:
(i) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{3 x}$;
(ii) $\lim _{n \rightarrow \infty} \frac{\left(n^{5}+2^{n}\right)^{2}}{2 n^{4}+4^{n+1}}$.
(b) Determine whether the following series are convergent or divergent, justifying your answer.
(i) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+\sqrt{n}}$;
(ii) $\sum_{n=0}^{\infty} \frac{2^{n}}{1+3^{n}}$.
10. (a) Use the trapezium rule to find an approximate value of the integral

$$
\int_{1}^{2} e^{x} d x
$$

by dividing the range of integration into five equal intervals. Compare your result with the exact answer.
(b) Write down the binomial distribution for x successes in n independent trials each with probability p of success.
(c) A tool hire shop has six lawn mowers which it hires out on a daily basis. The number of lawn mowers requested per day follows a Poisson distribution with mean 4.5 . Find the probability that
(i) exactly three lawn mowers are hired out on any one day;
(ii) all lawn mowers are in use on any one day.

