UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

17.5

۲

Mathematics E001: Mathematics

COURSE CODE	: MATHE001
UNIT VALUE	: 0.50
DATE	: 02-MAY-03
TIME	: 14.30
TIME ALLOWED	: 3 Hours

03-C0935-3-160 © 2003 University College London

TURN OVER

4

. م

All questions may be attempted but only marks obtained on the best seven solutions will count.

The use of an electronic calculator is permitted in this examination.

- (a) Find the modulus and argument of z = ½(1 − i). Find z⁸, expressing your answer in x + iy form. Find ∑_{n=0}[∞] zⁿ, expressing your answer in x + iy form.
 - (b) Let z be a complex number with modulus 1 and argument θ . Show that

$$z^n + z^{-n} = 2\cos n\theta.$$

Show that

j'

$$\cos^5 \theta = \frac{1}{16} \left(\cos 5\theta + 5 \cos 3\theta + 10 \cos \theta \right).$$

Hence find

$$\int_0^{\pi/3} \cos^5 \theta d\theta.$$

2. (a) Define $\sinh x$ and $\cosh x$ in terms of exponentials, and sketch their curves. Prove that

$$\cosh^2 x - \sinh^2 x = 1.$$

(b) Show that

$$\sinh^{-1} x = \ln \left[x + \sqrt{x^2 + 1} \right].$$

Hence, or otherwise, find

$$\frac{d}{dx}(\sinh^{-1}x).$$

Find

MATHE001

$$\int \sinh^{-1} x dx.$$

PLEASE TURN OVER

1

3. (a) Differentiate

(i)
$$x^{\cos x}$$
 and (ii) $x^2 \cos(e^{-x})$.

- (b) Let $x^3 4x + y^2 + y = 2$. Find the equation of the tangent at x = 2 which touches the curve at a positive value of y.
- (c) Let $y = \sec t$ and $x = \tan t$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ by parametric differitiation. Using a trigonometric identity, find a relation between y and x. By differentiating this relation, check your answer to $\frac{dy}{dx}$ found above. For $-\pi/2 < t < \pi/2$, where does the curve $y = \sec t$ and $x = \tan t$ have a turning point? Is it a maximum, minimum or point of inflection? Justify your answer.
- 4. Find the following integrals

(i)
$$\int \frac{x^2}{x^2 - 1} dx,$$

(ii)
$$\int_0^2 \frac{1}{\sqrt{x^2 + 4x}} dx,$$

(iii)
$$\int \frac{1}{x \ln x} dx,$$

(iv)
$$\int e^{-x} \cos x dx.$$

- 5. (a) Define carefully the dot and cross products of two vectors **a** and **b**.
 - (b) The vectors $\mathbf{a} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{b} = \mathbf{j} 3\mathbf{k}$ form two sides of a triangle. Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$. Find the area of the triangle and the angle between \mathbf{a} and \mathbf{b} .
 - (c) Given two non-zero vectors c and d, show, using the dot product, that if |c + d| = |c d| then c and d are perpendicular.

MATHE001

CONTINUED

신

6. (a) Let f(x, y) = x² exp (x/y). Find ∂f/∂x and ∂f/∂y.
(b) Let f(x, y) = xy cos(xy). Verify that ∂²f/∂x∂y = ∂²f/∂y∂x.
(c) Let z = x³f(x/y) where f is any differentiable function. Show that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 3z.$$

7. Solve the following differential equations:

(a)
$$e^{y^2}x\frac{dy}{dx} = y^{-1}, \quad y(1) = 2;$$

(b) $\frac{dy}{dx} - 2y = x^4e^{2x}, \quad y(0) = 1$

8. (a) Find the general solution of the differential equation

$$y'' + 3y' + 5y = x;$$

(b) Solve the following initial-value problem

$$y'' - 3y' + 2y = e^{3x}, \quad y(0) = 0, \quad y'(0) = 1.$$

9. (a) Find the following limits:

(i)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{3x}$$
;
(ii) $\lim_{n \to \infty} \frac{(n^5 + 2^n)^2}{2n^4 + 4^{n+1}}$.

(b) Determine whether the following series are convergent or divergent, justifying your answer.

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{1+\sqrt{n}};$$

(ii) $\sum_{n=0}^{\infty} \frac{2^n}{1+3^n}.$

MATHE001

PLEASE TURN OVER

,

٠.

10. (a) Use the trapezium rule to find an approximate value of the integral

$$\int_{1}^{2}e^{x}dx$$

by dividing the range of integration into five equal intervals. Compare your result with the exact answer.

- (b) Write down the binomial distribution for x successes in n independent trials each with probability p of success.
- (c) A tool hire shop has six lawn mowers which it hires out on a daily basis. The number of lawn mowers requested per day follows a Poisson distribution with mean 4.5. Find the probability that
 - (i) exactly three lawn mowers are hired out on any one day;
 - (ii) all lawn mowers are in use on any one day.

MATHE001