University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-
B.Sc.

Mathematics C396: Mathematics in Economics

COURSE CODE : MATHC396

UNIT VALUE : 0.50

DATE : 09-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Suppose that $B=\left(b_{i j}\right)$ is an $n \times n$ matrix such that $b_{i j} \leq 0$ for every $i \neq j$. Prove that the following statements are equivalent to each other.
(i) There exists a vector $x \geq 0$ such that $B x>0$.
(ii) For every non-negative vector c there exists a vector $x \geq 0$ such that $B x=c$.
(iii) B is invertible and the entries of B^{-1} are nonnegative.
(iv) Each principal minor of B is positive.
2. Let A be a non-negative $n \times n$ matrix. Prove that there exists a non-negative real number $\lambda(A)$ such that
(i) $\lambda(A)$ is an eigenvalue of A, and there is a non-negative eigenvector corresponding to $\lambda(A)$;
(ii) If ω is any (real or complex) eigenvalue of A then $|\omega| \leq \lambda(A)$.
3. Define what it means to say that a subset of \mathbb{R}^{n} is (i) open, and (ii) closed. Define the interior and the closure of a set $E \subset \mathbb{R}^{n}$. Prove that the point $x \in \mathbb{R}^{n}$ is in the interior of the set $E \subset \mathbb{R}^{n}$ if and only if $B(x, r) \subset E$ for some $r>0$. Prove that the point $x \in \mathbb{R}^{n}$ is in the closure of the set $E \subset \mathbb{R}^{n}$ if and only if $B(x, r) \cap E \neq \emptyset$ for every $r>0$.

Decide, whether or not the following statements are true. If the statement is true for every n, prove it. If there it is false, give a counter-example.

If $A \subset \mathbb{R}^{n}$ is convex, then its interior is also convex.
If $A \subset \mathbb{R}^{n}$ is open, then its convex hull is also open.
If $A \subset \mathbb{R}^{n}$ is convex, then its closure is also convex.
If $A \subset \mathbb{R}^{n}(n \geq 2)$ is closed, then its convex hull is also closed.
4. Let a and b be distinct points in \mathbb{R}^{n}. Define the perpendicular bisector of the segment $[a, b]$. Prove that the perpendicular bisector of the segment $[a, b]$ is a hyperplane.

Define what it means to say that two subsets of \mathbb{R}^{n} are strictly separated by a hyperplane.

Prove that if $A, B \subset \mathbb{R}^{n}$ are disjoint non-empty closed convex sets and at least one of them is bounded, then they can be strictly separated by a hyperplane.
5. Define what it means to say that a subset of \mathbb{R}^{n} is a closed half-space.

Prove that in \mathbb{R}^{n} every n-simplex is the intersection of $n+1$ closed half-spaces.
Define the barycentric coordinates of the point $x \in \mathbb{R}^{n}$ with respect to an n-simplex $S \subset \mathbb{R}^{n}$. Define what we mean by the carrier of the point x.
State and prove Sperner's Lemma about triangulations of a simplex.

