UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

B.Sc.

٩

1

Mathematics C396: Mathematics in Economics

COURSE CODE	: MATHC396
UNIT VALUE	: 0.50
DATE	: 09-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Suppose that $B = (b_{ij})$ is an $n \times n$ matrix such that $b_{ij} \leq 0$ for every $i \neq j$. Prove that the following statements are equivalent to each other.
 - (i) There exists a vector $x \ge 0$ such that Bx > 0.
 - (ii) For every non-negative vector c there exists a vector $x \ge 0$ such that Bx = c.
 - (iii) B is invertible and the entries of B^{-1} are nonnegative.
 - (iv) Each principal minor of B is positive.
- 2. Let A be a non-negative $n \times n$ matrix. Prove that there exists a non-negative real number $\lambda(A)$ such that
 - (i) $\lambda(A)$ is an eigenvalue of A, and there is a non-negative eigenvector corresponding to $\lambda(A)$;
 - (ii) If ω is any (real or complex) eigenvalue of A then $|\omega| \leq \lambda(A)$.
- 3. Define what it means to say that a subset of \mathbb{R}^n is (i) open, and (ii) closed. Define the interior and the closure of a set $E \subset \mathbb{R}^n$. Prove that the point $x \in \mathbb{R}^n$ is in the interior of the set $E \subset \mathbb{R}^n$ if and only if $B(x,r) \subset E$ for some r > 0. Prove that the point $x \in \mathbb{R}^n$ is in the closure of the set $E \subset \mathbb{R}^n$ if and only if $B(x,r) \cap E \neq \emptyset$ for every r > 0.

Decide, whether or not the following statements are true. If the statement is true for every n, prove it. If there it is false, give a counter-example.

If $A \subset \mathbb{R}^n$ is convex, then its interior is also convex.

If $A \subset \mathbb{R}^n$ is open, then its convex hull is also open.

If $A \subset \mathbb{R}^n$ is convex, then its closure is also convex.

If $A \subset \mathbb{R}^n$ $(n \ge 2)$ is closed, then its convex hull is also closed.

MATHC396

PLEASE TURN OVER

4. Let a and b be distinct points in \mathbb{R}^n . Define the perpendicular bisector of the segment [a, b]. Prove that the perpendicular bisector of the segment [a, b] is a hyperplane.

Define what it means to say that two subsets of \mathbb{R}^n are strictly separated by a hyperplane.

Prove that if $A, B \subset \mathbb{R}^n$ are disjoint non-empty closed convex sets and at least one of them is bounded, then they can be strictly separated by a hyperplane.

5. Define what it means to say that a subset of \mathbb{R}^n is a closed half-space. Prove that in \mathbb{R}^n every *n*-simplex is the intersection of n + 1 closed half-spaces.

Define the barycentric coordinates of the point $x \in \mathbb{R}^n$ with respect to an *n*-simplex $S \subset \mathbb{R}^n$. Define what we mean by the carrier of the point x.

State and prove Sperner's Lemma about triangulations of a simplex.

MATHC396