UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ί,

Mathematics C396: Mathematics in Economics

COURSE CODE	: MATHC396
UNIT VALUE	: 0.50
DATE	: 10-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (i) Prove that every bounded and monotonic sequence of real numbers is convergent.
 - (ii) Define what it means that a point c is a point of accumulation of a set $H \subset \mathbb{R}$. Prove that every bounded and infinite set has a point of accumulation.
 - (iii) Prove that every bounded sequence of real numbers has a convergent subsequence.
- 2. (i) Define the geometric and algebraic multiplicity of an eigenvalue of a matrix. Give an example of a matrix A and an eigenvalue λ of A such that the geometric multiplicity of λ is strictly less than the algebraic multiplicity of λ .
 - (ii) Suppose that A and B are $n \times n$ matrices such that $0 \le A \le B$, $A \ne B$ and B is indecomposable. Prove that the Frobenius root of A is strictly smaller than the Frobenius root of B.
 - (iii) Prove that if the matrix A is non-negative and indecomposable, then its Frobenius root has algebraic multiplicity one. (You may use, without proof, the fact that if $\phi_A(t)$ is the characteristic polynomial of A then

$$\phi_A'(t) = \phi_{A_1}(t) + \ldots + \phi_{A_n}(t),$$

where A_1, \ldots, A_n are the principal subdeterminants of order n-1 of A.)

- 3. (i) Prove that a set $F \subset \mathbb{R}^n$ is a hyperplane if and only if there are a nonzero linear function $\ell : \mathbb{R}^n \to \mathbb{R}$ and a real number b such that $F = \{x : \ell(x) = b\}$.
 - (ii) Prove that in \mathbb{R}^n every *n*-simplex is the intersection of n+1 closed halfspaces.
 - (iii) Prove that in \mathbb{R}^n every *n*-simplex has a non-empty interior.

MATHC396

1

- 4. (i) Prove that if a set $A \subset \mathbb{R}^n$ has at least n+2 points then there is a decomposition $A = A_1 \cup A_2$ such that $A_1 \cap A_2 = \emptyset$ and $\operatorname{co} A_1 \cap \operatorname{co} A_2 \neq \emptyset$.
 - (ii) Prove that if A_1, \ldots, A_k are convex sets in \mathbb{R}^n such that $k \ge n+2$ and any n+1 of the sets A_1, \ldots, A_k have a nonempty intersection, then $\bigcap_{i=1}^k A_i \neq \emptyset$.
 - (iii) Prove that if A_1, A_2, \ldots are closed, bounded and convex sets in \mathbb{R}^n such that any n+1 of them have a nonempty intersection, then $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$.
- 5. State and prove Brouwer's fixed point theorem. (You may use, without proof, Sperner's Lemma about triangulations of a simplex, and the fact that in \mathbb{R}^n every closed, bounded and convex set with a non-empty interior is homeomorphic to an *n*-simplex.)