UNIVERSITY COLLEGE LONDON

1
University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:B.Sc. M.Sci.

Mathematics C396: Mathematics in Economics

COURSE CODE : MATHC396

UNIT VALUE : 0.50

DATE : 10-MAY-05

TIME
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (i) Prove that every bounded and monotonic sequence of real numbers is convergent.
(ii) Define what it means that a point c is a point of accumulation of a set $H \subset \mathbb{R}$. Prove that every bounded and infinite set has a point of accumulation.
(iii) Prove that every bounded sequence of real numbers has a convergent subsequence.
2. (i) Define the geometric and algebraic multiplicity of an eigenvalue of a matrix. Give an example of a matrix A and an eigenvalue λ of A such that the geometric multiplicity of λ is strictly less than the algebraic multiplicity of λ.
(ii) Suppose that A and B are $n \times n$ matrices such that $0 \leq A \leq B, A \neq B$ and B is indecomposable. Prove that the Frobenius root of A is strictly smaller than the Frobenius root of B.
(iii) Prove that if the matrix A is non-negative and indecomposable, then its Frobenius root has algebraic multiplicity one. (You may use, without proof, the fact that if $\phi_{A}(t)$ is the characteristic polynomial of A then

$$
\phi_{A}^{\prime}(t)=\phi_{A_{1}}(t)+\ldots+\phi_{A_{n}}(t),
$$

where A_{1}, \ldots, A_{n} are the principal subdeterminants of order $n-1$ of A.)
3. (i) Prove that a set $F \subset \mathbb{R}^{n}$ is a hyperplane if and only if there are a nonzero linear function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a real number b such that $F=\{x: \ell(x)=b\}$.
(ii) Prove that in \mathbb{R}^{n} every n-simplex is the intersection of $n+1$ closed halfspaces.
(iii) Prove that in \mathbb{R}^{n} every n-simplex has a non-empty interior.
4. (i) Prove that if a set $A \subset \mathbb{R}^{n}$ has at least $n+2$ points then there is a decomposition $A=A_{1} \cup A_{2}$ such that $A_{1} \cap A_{2}=\emptyset$ and $\operatorname{co} A_{1} \cap \operatorname{co} A_{2} \neq \emptyset$.
(ii) Prove that if A_{1}, \ldots, A_{k} are convex sets in \mathbb{R}^{n} such that $k \geq n+2$ and any $n+1$ of the sets A_{1}, \ldots, A_{k} have a nonempty intersection, then $\bigcap_{i=1}^{k} A_{i} \neq \emptyset$.
(iii) Prove that if A_{1}, A_{2}, \ldots are closed, bounded and convex sets in \mathbb{R}^{n} such that any $n+1$ of them have a nonempty intersection, then $\bigcap_{i=1}^{\infty} A_{i} \neq \emptyset$.
5. State and prove Brouwer's fixed point theorem. (You may use, without proof, Sperner's Lemma about triangulations of a simplex, and the fact that in \mathbb{R}^{n} every closed, bounded and convex set with a non-empty interior is homeomorphic to an n-simplex.)

