UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C396: Mathematics in Economics

COURSE CODE	: MATHC396
UNIT VALUE	: 0.50
DATE	: 28-MAY-04
TIME	: 10.00
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Suppose that $B = (b_{ij})$ is an $n \times n$ matrix such that $b_{ij} \leq 0$ for every $i \neq j$. Prove that the following statements are equivalent to each other.
 - (i) There exists a vector $x \ge 0$ such that Bx > 0.
 - (ii) For every non-negative vector c there exists a vector $x \ge 0$ such that Bx = c.
 - (iii) B is invertible and the entries of B^{-1} are nonnegative.
 - (iv) Each principal minor of B is positive.
- 2. Define what it means that (i) a sequence of $n \times n$ matrices A_k converges to the matrix A; and (ii) the series $\sum_{k=1}^{\infty} A_k$ is convergent and its sum equals A. Prove that if $\sum_{k=1}^{\infty} A_k$ converges then $A_k \to 0$.

Let A be a non-negative $n \times n$ matrix. Define what it means that A is productive. Prove that the following statements are equivalent to each other.

- (i) A is productive.
- (ii) I A is invertible and $(I A)^{-1} \ge 0$.
- (iii) The infinite series $\sum_{k=0}^{\infty} A^k$ converges.
- 3. Define what it means to say that a subset of \mathbb{R}^n is (i) open, (ii) closed. Prove that a set $H \subset \mathbb{R}^n$ is closed if and only if, whenever $x_k \in H$ and $x_k \to x$ then $x \in H$.

Define what it means to say that a subset of \mathbb{R}^n is convex. Define the convex hull of a subset of \mathbb{R}^n .

Prove that the convex hull of a closed and bounded set is closed.

Give an example of a closed set such that its convex hull is not closed.

4. Let \mathcal{H} be a finite system of convex subsets of \mathbb{R}^n containing at least n+2 sets. Prove that if any n+1 elements of \mathcal{H} have a nonempty intersection then all elements of \mathcal{H} have a nonempty intersection. (Any results which are quoted in the course of the proof must be clearly stated.) 5. State and prove Sperner's Lemma about triangulations of a simplex. Prove that if S is a simplex and $f: S \to S$ is continuous then there is a point $x \in S$ such that f(x) = x. (Any results which are quoted in the course of the proof must be clearly stated.)

۱