UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics C396: Mathematics in Economics

COURSE CODE	:	MATHC396
UNIT VALUE	:	0.50
DATE	:	29-APR-02
TIME	:	14.30
TIME ALLOWED	:	2 hours

02-C0928-3-30

© 2002 University of London

~

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. Let A be a non-negative $n \times n$ matrix. Explain what it means to say that A is *productive*, giving also an economic interpretation. Describe an alternative condition for productivity of A, involving the leading principal minors of a related matrix.

What does it mean to say that A is *profitable*, again giving an economic interpretation? Show that A is profitable if and only if it is productive.

Determine, justifying the answers, which of the following matrices are productive.

ĺ	0.4	0.4	0.1^{-1}		0.2	0.3	0.4		Г 0	0.7	0		0.2	0.7	0]	
	0.2	0.2	0.5	,	0.1	0.2	0.1	1 '	0.7	0	0.6	l í	0.7	0	0.6	
	0.2	0.4	0.2		0.4	0.3	0.4		0	0.6	0		0			

2. State and prove Carathéodory's Theorem for the positive hull pos S of a subset S of \mathbb{R}^n .

State Carathéodory's Theorem for the convex hull conv A of $A \subseteq \mathbb{R}^n$. Prove that, if A is closed and bounded, then conv A is also closed and bounded.

- 3. Define what it means to say that two convex sets K_0 and K_1 in \mathbb{R}^n can be properly separated. State and prove a necessary and sufficient condition for K_0 and K_1 to be properly separable. (Any results assumed in the proof must be clearly stated.)
- 4. State and prove Sperner's Lemma about triangulations of a simplex (decompositions into subsimplices).

Explain briefly how Sperner's Lemma is relevant to Brouwer's Fixed Point Theorem.

5. Let f be a convex function on \mathbb{E}^n , and let a be a point at which f is finite. Define the terms directional derivative of f in direction y, subgradient of f at a, and subdifferential of f at a. Prove that the directional derivative f'(a; y) always exists. Prove also that $a^* \in \partial f(a)$ if and only if $\langle y, a^* \rangle \leq f'(a; y)$ for each $y \in \mathbb{E}^n$.

MATHC396

END OF PAPER