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All questions may be attempted but only marks obtained on the best four solutions will

count.
The use of an electronic calculator is not permitted in this examination.

1. In a population model, the population density is N, and the per capita birth and
death rates are 3(N) and 6(N) respectively where

B(N) = T{%’ 6(N)=d, wherer,d, K > 0 are constants.

(a) Write down the differential equation for the population growth.

(b) Show that there is a unique locally asymptotically steady state population
T < u* for some p* which you should find. Find and classify

when p = K
the stability of all the steady states of the model when p > p*.

(c) Suppose that initially 4 = 3u*/2 and the population is steady and at its
maximum stable size. The population then experiences a severe and sustained
famine during which the per capita death rate doubles. After a long period
the famine lifts and food resources are restored. Explain what happens to the
population during this sequence of events.

2. In an age-structured population, the number of females of age a at time t is N,(t) for
a,t=0,1,2,.... The maximum age any individual can reach is 6. The probability
of surviving from age a to age a + 1 is p; for 0 < a < 2 and p; for 3 < a < 5 where
p1,p2 € (0,1) are constants. Females reach sexual maturity at the age a = 5 beyond
which the expected number of offspring to an individual is a constant b > 0.

(a) Derive the Euler-Lotka equation for the stable population growth rates A and
show using a graph that the equation has a unique positive root A¢. Are the
other roots real or complex?

(b) When p; = p, = p find an explicit form for the stable age structure in terms
of Ao and p.
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3. A population is modelled by the differential equation

N (1 - 7(5) , N(0)= Ny, (1)

where p > 0 and No > 0 are constants and K (t) is a periodic function with period
T and satisfying K(t) > K for all t > 0, for some K > 0.

(a) Give an ecological interpretation of p and K (t).
(b) By considering M(t) = N(t)e™#, or otherwise, show that (1) has the solution

_ Noe”t
1+ No Jy H(u)du’

where H(u) = e,

N(t) 7400

(c) Show that the asymptotic population behaviour N, defined by No(s) =
limy_,oo N(KT + s) is periodic with period T and find the value of

/0 ’ NI?ES) ds.

4. In a model of predators density P feeding on a prey density N the dynamics takes
the form

W N (1 _ %’) - N§(N,P), %2 = P(a() - ), @

where 7, 4, K > 0 are constants and, for some € > 0, 6/(N) > ¢ for N > 0 and
g—f)(N,P) 2 efor NP > 0.
(a) Explain briefly the ecological meaning of ¢ and o. What additional conditions
should ¢ and ¢ satisfy to render the model realistic?
(b) Derive conditions under which (2) has a unique positive steady state (N*, P*).
(c) Find the condition for (N*, P*) to be locally asymptotically stable.
(d) For the case when o(N) = &N for & > 0 constant and

vP

#(N,P) = 57—,

a,y > 0 constants,

show that if K? > 3a a stable limit cycle appears when 4 increases through z
for some i which you should find. (You may assume that (N*, P*) is asymp-
totically stable when p = f).
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5. A population has density V; at t years and the population at ¢ 4 1 years is given by
Nip1 = F(Ny). (3)

(a) Explain what is meant by local asymptotic stability of a steady state of (3).
What is the condition that guarantees such a steady state is locally asymptot-
ically stable?

(b) Interpret all solutions N of F(F(N)) = N.

rN
— where 7, A > 0 are real constants and m > 0 an integer.

NOW let F(N) = m

(c) Find and classify all the steady states of (3).

(d) When m = 3 and A = 1 show that a 2-cycle appears in (3) as r exceeds 3.
(Hint: You may find it helpful to consider z =1+ N3)
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