University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sc. M.Sci.

Mathematics C399: Mathematics in Biology I

COURSE CODE : MATHC399

UNIT VALUE : 0.50

DATE : 23-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. In a population model, the population density is N, and the per capita birth and death rates are $\beta(N)$ and $\delta(N)$ respectively where

$$
\beta(N)=\frac{r N}{K+N^{2}}, \quad \delta(N)=d, \quad \text { where } r, d, K>0 \text { are constants. }
$$

(a) Write down the differential equation for the population growth.
(b) Show that there is a unique locally asymptotically steady state population when $\mu=\frac{r}{d \sqrt{K}}<\mu^{*}$ for some μ^{*} which you should find. Find and classify the stability of all the steady states of the model when $\mu>\mu^{*}$.
(c) Suppose that initially $\mu=3 \mu^{*} / 2$ and the population is steady and at its maximum stable size. The population then experiences a severe and sustained famine during which the per capita death rate doubles. After a long period the famine lifts and food resources are restored. Explain what happens to the population during this sequence of events.
2. In an age-structured population, the number of females of age a at time t is $N_{a}(t)$ for $a, t=0,1,2, \ldots$. The maximum age any individual can reach is 6 . The probability of surviving from age a to age $a+1$ is p_{1} for $0 \leqslant a \leqslant 2$ and p_{2} for $3 \leqslant a \leqslant 5$ where $p_{1}, p_{2} \in(0,1)$ are constants. Females reach sexual maturity at the age $a=5$ beyond which the expected number of offspring to an individual is a constant $b>0$.
(a) Derive the Euler-Lotka equation for the stable population growth rates λ and show using a graph that the equation has a unique positive root λ_{0}. Are the other roots real or complex?
(b) When $p_{1}=p_{2}=p$ find an explicit form for the stable age structure in terms of λ_{0} and p.
3. A population is modelled by the differential equation

$$
\begin{equation*}
\frac{d N}{d t}=\rho N\left(1-\frac{N}{K(t)}\right), \quad N(0)=N_{0} \tag{1}
\end{equation*}
$$

where $\rho>0$ and $N_{0} \geqslant 0$ are constants and $K(t)$ is a periodic function with period T and satisfying $K(t) \geqslant \bar{K}$ for all $t \geqslant 0$, for some $\bar{K}>0$.
(a) Give an ecological interpretation of ρ and $K(t)$.
(b) By considering $M(t)=N(t) e^{-\rho t}$, or otherwise, show that (1) has the solution

$$
N(t)=\frac{N_{0} e^{\rho t}}{1+N_{0} \int_{0}^{t} H(u) d u}, \quad \text { where } H(u)=\frac{\rho}{K(u)} e^{\rho u}
$$

(c) Show that the asymptotic population behaviour N_{∞} defined by $N_{\infty}(s)=$ $\lim _{k \rightarrow \infty} N(k T+s)$ is periodic with period T and find the value of

$$
\int_{0}^{T} \frac{N_{\infty}(s)}{K(s)} d s
$$

4. In a model of predators density P feeding on a prey density N the dynamics takes the form

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-N \phi(N, P), \quad \frac{d P}{d t}=P(\sigma(N)-\mu) \tag{2}
\end{equation*}
$$

where $r, \mu, K>0$ are constants and, for some $\epsilon>0, \sigma^{\prime}(N) \geqslant \epsilon$ for $N \geqslant 0$ and $\frac{\partial \phi}{\partial P}(N, P) \geqslant \epsilon$ for $N, P \geqslant 0$.
(a) Explain briefly the ecological meaning of ϕ and σ. What additional conditions should σ and ϕ satisfy to render the model realistic?
(b) Derive conditions under which (2) has a unique positive steady state (N^{*}, P^{*}).
(c) Find the condition for $\left(N^{*}, P^{*}\right)$ to be locally asymptotically stable.
(d) For the case when $\sigma(N)=\bar{\sigma} N$ for $\bar{\sigma}>0$ constant and

$$
\phi(N, P)=\frac{\gamma P}{N^{2}+\alpha}, \quad \alpha, \gamma>0 \text { constants }
$$

show that if $K^{2}>3 \alpha$ a stable limit cycle appears when μ increases through $\bar{\mu}$ for some $\bar{\mu}$ which you should find. (You may assume that (N^{*}, P^{*}) is asymptotically stable when $\mu=\bar{\mu}$).
5. A population has density N_{t} at t years and the population at $t+1$ years is given by

$$
\begin{equation*}
N_{t+1}=F\left(N_{t}\right) \tag{3}
\end{equation*}
$$

(a) Explain what is meant by local asymptotic stability of a steady state of (3). What is the condition that guarantees such a steady state is locally asymptotically stable?
(b) Interpret all solutions N of $F(F(N))=N$.

Now let $F(N)=\frac{r N}{A+N^{m}}$ where $r, A>0$ are real constants and $m>0$ an integer.
(c) Find and classify all the steady states of (3).
(d) When $m=3$ and $A=1$ show that a 2-cycle appears in (3) as r exceeds 3. (Hint: You may find it helpful to consider $x=1+N^{3}$)

