EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.A. B.Sc. B.Sc.(Econ)

Mathematics B611: Mathematics for Students of Economics, Statistics \& Related Disciplines

COURSE CODE : MATHB611

UNIT VALUE : 0.50

DATE : 11-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

Answer ALL questions from Section A.
All questions from Section B may be attempted but only marks obtained on best two solutions from Section B will count.
The use of an electronic calculator is not permitted in this examination.

Section A: Use a separate answer book for this section

1. (a) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be vectors in \mathbb{R}^{n}. Explain what is meant by saying that
(i) $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly independent;
(ii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ span \mathbb{R}^{n};
(iii) $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ form a basis of \mathbb{R}^{n};
(iv) $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ form an orthogonal basis of \mathbb{R}^{n}.
(b) Determine which of the following sets form a vector space. The set consisting of all vectors of the form:
(i) $\left(\begin{array}{c}x \\ 3 x \\ 4 x+7 y\end{array}\right)$;
(ii) $\binom{x}{y}$ with $x<0, y<0$;
(iii) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ such that $x+y-z=1$.

In case the set is not a vector space explain why not.
(c) Show that if V, W are two subspaces in \mathbb{R}^{n} whose intersection is 0 , then $\operatorname{dim}(V)+\operatorname{dim}(W)=\operatorname{dim}(V+W)$.
2. (a) For an $m \times n$ matrix $A, \mathbf{b} \in \mathbb{R}^{m}$ and the augmented matrix $A_{\mathbf{b}}$, which of the following statements are true and which are false?
(i) If $A \mathbf{x}=\mathbf{b}$ has a unique solution then $n=m$.
(ii) If $A \mathbf{x}=\mathbf{0}$ has a unique solution then $n=m$.
(iii) If $A \mathbf{x}=\mathrm{b}$ has a unique solution then $\operatorname{rank}(A)=\operatorname{rank}\left(A_{\mathbf{b}}\right)$.
(iv) If $\operatorname{rank}(A)=\operatorname{rank}\left(A_{\mathbf{b}}\right)$ then $A \mathbf{x}=\mathbf{b}$ has a unique solution.
(v) If $A \mathbf{x}=\mathbf{b}$ has a unique solution then $\operatorname{rank}(A)=n$.
(b) Define $\operatorname{ker} A$ and show that it is a vector space. What is its dimension? Prove your answer.
(c) State Cramer's rule for the solution of a linear system $A \mathbf{x}=\mathbf{b}$. When is this rule applicable?
3. (a) Define the rank of a matrix.
(b) Show that if $A B$ is defined and A is not singular, then $\operatorname{rank}(A B)=\operatorname{rank}(B)$. (You may use without proof that multiplying a matrix with another matrix cannot increase its rank.)
(c) Find the rank of A, B, C, where $C=A B$ and
(i) $A=\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right) \quad B=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$;
(ii) $A=\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right) \quad B=\left(\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right)$;
(iii) $A=\left(\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right) \quad B=\left(\begin{array}{cc}4 & 0 \\ -1 & 0\end{array}\right)$;
(iv) $A=\left(\begin{array}{cc}4 & 0 \\ -1 & 0\end{array}\right) \quad B=\left(\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right)$.
(d) Is it true that if $A B=A C$ and $B \neq C$ then A is singular? Prove your answer.

Section B: Use a separate answer book for this section

4. (a) Explain what an inversion is and what it means that a permutation is even or odd.
(b) Show that the transposition of two elements in any permutation changes odd to even and even to odd.
(c) Define the determinant of an $n \times n$ matrix.
(d) If A is a 3×3 matrix with $\operatorname{det} A=2$ and B is a 3×3 matrix with $\operatorname{det} B=5$, respectively, and if A and B differ only in their second row, what is
(i) the determinant of $10 A A^{T}$;
(ii) the determinant of $A+B$?
5. (a) Give the definition of an eigenvalue and an eigenvector of an $n \times n$ matrix A.
(b) Define the characteristic polynomial and explain why the eigenvalues of A are the roots of the characteristic polynomial.
(c) Suppose that the matrix A has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Show that:
(i) The eigenvalues of $2 A$ are $2 \lambda_{1}, 2 \lambda_{2}, \ldots, 2 \lambda_{k}$;
(ii) The eigenvalues of A^{2} are $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{k}^{2}$.
(d) Show that if B is invertible then the characteristic polynomial of $B^{-1} A B$ and A coincide.
6. (a) Define what it means that an $n \times n$ matrix Q is orthogonal.
(b) Show that $(Q \mathbf{x}, Q \mathbf{y})=(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
(c) Deduce that Q preserves angle and length.
(d) Show that every eigenvalue of Q has absolute value 1 .
