UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Sc. B.Sc.(Econ)

٩,

٤

Mathematics B611: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE : MATHB611

UNIT VALUE : 0.50

DATE : 11-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

Answer ALL questions from Section A.

All questions from Section B may be attempted but only marks obtained on best two solutions from Section B will count.

The use of an electronic calculator is not permitted in this examination.

Section A: Use a separate answer book for this section

- 1. (a) Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ be vectors in \mathbb{R}^n . Explain what is meant by saying that
 - (i) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent;
 - (ii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ span \mathbb{R}^n ;
 - (iii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ form a basis of \mathbb{R}^n ;
 - (iv) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ form an orthogonal basis of \mathbb{R}^n .
 - (b) Determine which of the following sets form a vector space. The set consisting of all vectors of the form:

(i)
$$\begin{pmatrix} x \\ 3x \\ 4x + 7y \end{pmatrix}$$
;
(ii) $\begin{pmatrix} x \\ y \end{pmatrix}$ with $x < 0, y < 0$;
(iii) $\begin{pmatrix} x \\ y \end{pmatrix}$ such that $x + y - z = 1$.

 $\langle z \rangle$

In case the set is not a vector space explain why not.

- (c) Show that if V, W are two subspaces in \mathbb{R}^n whose intersection is **0**, then $\dim(V) + \dim(W) = \dim(V + W)$.
- 2. (a) For an $m \times n$ matrix $A, \mathbf{b} \in \mathbb{R}^m$ and the augmented matrix $A_{\mathbf{b}}$, which of the following statements are true and which are false?
 - (i) If $A\mathbf{x} = \mathbf{b}$ has a unique solution then n = m.
 - (ii) If $A\mathbf{x} = \mathbf{0}$ has a unique solution then n = m.
 - (iii) If $A\mathbf{x} = \mathbf{b}$ has a unique solution then $\operatorname{rank}(A) = \operatorname{rank}(A_{\mathbf{b}})$.
 - (iv) If $rank(A) = rank(A_b)$ then $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (v) If $A\mathbf{x} = \mathbf{b}$ has a unique solution then rank(A) = n.

MATHB611

PLEASE TURN OVER

- (b) Define ker A and show that it is a vector space. What is its dimension? Prove your answer.
- (c) State Cramer's rule for the solution of a linear system $A\mathbf{x} = \mathbf{b}$. When is this rule applicable?
- 3. (a) Define the rank of a matrix.
 - (b) Show that if AB is defined and A is not singular, then rank(AB) = rank(B). (You may use without proof that multiplying a matrix with another matrix cannot increase its rank.)
 - (c) Find the rank of A, B, C, where C = AB and

(i)
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix};$
(ii) $A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix};$
(iii) $A = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 4 & 0 \\ -1 & 0 \end{pmatrix};$
(iv) $A = \begin{pmatrix} 4 & 0 \\ -1 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}.$

(d) Is it true that if AB = AC and $B \neq C$ then A is singular? Prove your answer.

MATHB611

11

ŵ,

Section B: Use a separate answer book for this section

- 4. (a) Explain what an inversion is and what it means that a permutation is even or odd.
 - (b) Show that the transposition of two elements in any permutation changes odd to even and even to odd.
 - (c) Define the determinant of an $n \times n$ matrix.
 - (d) If A is a 3×3 matrix with det A = 2 and B is a 3×3 matrix with det B = 5, respectively, and if A and B differ only in their second row, what is
 - (i) the determinant of $10AA^T$;
 - (ii) the determinant of A + B?
- 5. (a) Give the definition of an eigenvalue and an eigenvector of an $n \times n$ matrix A.
 - (b) Define the characteristic polynomial and explain why the eigenvalues of A are the roots of the characteristic polynomial.
 - (c) Suppose that the matrix A has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Show that:
 - (i) The eigenvalues of 2A are $2\lambda_1, 2\lambda_2, \ldots, 2\lambda_k$;
 - (ii) The eigenvalues of A^2 are $\lambda_1^2, \lambda_2^2, \ldots, \lambda_k^2$.
 - (d) Show that if B is invertible then the characteristic polynomial of $B^{-1}AB$ and A coincide.
- 6. (a) Define what it means that an $n \times n$ matrix Q is orthogonal.
 - (b) Show that $(Q\mathbf{x}, Q\mathbf{y}) = (\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - (c) Deduce that Q preserves angle and length.
 - (d) Show that every eigenvalue of Q has absolute value 1.

MATHB611