University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)

Mathematics B611: Mathematics for Students of Economics, Statistics \& Related Disciplines

COURSE CODE : MATHB611

UNIT VALUE : 0.50

DATE : 20-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

Answer ALL questions from Section A.
All questions from Section B may be attempted, but only marks obtained on the best two solutions from Section B will count.
The use of an electronic calculator is not permitted in this examination.

Section A

1. (a) Explain what is meant by an elementary row operation and by a row echelon form. How can these be used to compute the rank of a matrix? How does the determinant of a square matrix change under elementary row operations? How can the determinant be computed using elementary row operations?
(b) Find a row echelon form of the matrix

$$
A=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 6 & -1 & 4 & 3 & 2 \\
-1 & -4 & 4 & 0 & 2 & 4 \\
0 & 0 & 0 & 1 & -2 & 5 \\
3 & 8 & 2 & 8 & 8 & 8
\end{array}\right)
$$

What is the rank of A ?
2. (a) Give the definition of an eigenvalue, and an eigenvector of an $n \times n$ matrix A with real or complex entries.
(b) Explain why the eigenvalues of A are the roots of the characteristic polynomial of A.
(c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
3 & 5 \\
5 & 3
\end{array}\right)
$$

(d) Show: If λ is an eigenvalue of an invertible $n \times n$ matrix A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
3. (a) For an $m \times n$ matrix A and $b \in \mathbb{R}^{m}$, which of the following statements are true and which are false?
(i) If the linear system $A x=b$ has a unique solution x then $n=m$.
(ii) If the linear system $A x=b$ has a solution x then the rank of A equals the rank of the augmented $m \times(n+1)$ matrix ($A b$).
(iii) If $m>n$ and $b \neq 0$ then $A x=b$ has no solution.
(iv) If $m=n$ and $\operatorname{det} A \neq 0$ then $A x=b$ has a unique solution for every b.
(v) If $m<n$ then $A x=0$ has a nontrivial solution.
(b) State Cramer's rule for the solution of a linear system $A x=b$. When is this rule applicable?
(c) Using Cramer's rule, find y (only) from the system

$$
\begin{aligned}
x+y & =1 \\
3 x-z & =-4 \\
-3 y+z & =3
\end{aligned}
$$

Section B

4. (a) Let A be an $n \times n$ matrix. Give the definition of the inverse matrix A^{-1}.
(b) Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 2 & 0 \\
1 & 3 & 1
\end{array}\right)
$$

(c) Assume A and B are $n \times n$ invertible matrices. Prove that $A B$ is also invertible and find its inverse.
5. Let Q be an $n \times n$ matrix with $Q^{T} Q=I$ (i.e., an orthogonal matrix).
(a) Show that $Q x \cdot Q y=x \cdot y$ for all $x, y \in \mathbb{R}^{n}$.
(b) Show that Q maps orthogonal vectors to orthogonal vectors, i.e., $x \perp y$ implies $Q x \perp Q y$.
(c) Show that $|Q x|=|x|$ for all $x \in \mathbb{R}^{n}$.
(d) Show that every eigenvalue of Q has modulus 1 .
(e) Find real numbers x, y such that the matrix $Q=\left(\begin{array}{cc}x & -1 \\ 1 & y\end{array}\right)$ is orthogonal. What is the geometric meaning of the linear transformation induced by this matrix Q ?
6. (a) Define the following terms: subspace of \mathbb{R}^{n}, basis, dimension.
(b) For an $m \times n$ matrix A the null space of A is the set of all vectors $x \in \mathbb{R}^{n}$ such that $A x=0$. Show that this is a subspace of \mathbb{R}^{n}.
(c) Compute the dimension and find a basis of the null space of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
0 & -1 & 1 & 1 \\
1 & 0 & 3 & 1
\end{array}\right)
$$

