UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

.

B.Sc. B.Sc.(Econ)

\$ I

Mathematics B611: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE	: MATHB611
UNIT VALUE	: 0.50
DATE	: 21-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

- All questions may be attempted but only marks obtained on the best five solutions will count.
 - The use of an electronic calculator is **not** permitted in this examination.
 - 1. (a) Explain what is meant by an elementary row operation, by the echelon form and by the reduced row echelon form of a matrix.
 - (b) Find the reduced row echelon form of the matrix

$$A = \begin{pmatrix} 5 & 8 & 5 & -2 & -3 & 1 \\ 1 & 2 & 3 & 4 & -1 & 0 \\ 4 & 6 & 2 & -6 & -2 & 1 \\ 0 & 0 & 0 & 1 & -4 & 5 \\ 6 & 10 & 8 & 3 & -8 & 6 \end{pmatrix}.$$

What is the rank of A?

- 2. (a) Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be vectors in a vector space V. Explain what is meant by saying that
 - (i) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent;
 - (ii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ span the vector space V;
 - (iii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ form a basis of V.
 - (b) Let the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be linearly independent. Put $\mathbf{w}_1 = \mathbf{v}_1 \mathbf{v}_2, \ \mathbf{w}_2 =$ $\mathbf{v}_2 - \mathbf{v}_3$, $\mathbf{w}_3 = \lambda \mathbf{v}_3 - \mathbf{v}_1$, where λ is a real number. For which values of λ are the vectors \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 linearly independent?
 - (c) Find a basis for the vector space V consisting of all vectors $\begin{pmatrix} z \\ y \\ z \\ s \\ t \end{pmatrix} \in \mathbb{R}^5$

satisfying x - y = z + s = t. What is the dimension of V?

MATHB611

Ŋ,

Þ

PLEASE TURN OVER

3. (a) Give the definition of an elementary matrix. State which of the following matrices are elementary:

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right), B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right), C = \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

ŧ,

- (b) Show that each elementary matrix is invertible and its inverse is an elementary matrix.
- (c) Give an example of two elementary matrices whose product is an elementary matrix different from the identity.
- 4. (a) Let A be an $n \times n$ matrix. Give the definition of the inverse matrix A^{-1} . Prove that the inverse matrix, if it exists, is unique.
 - (b) Let A be an $n \times n$ matrix. Prove that the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^n$ if and only if A is invertible.
 - (c) Find the inverse of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & -1 \\ -3 & 0 & 0 \\ 2 & -2 & 4 \end{array}\right).$$

- 5. (a) Define the scalar product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and the length of a vector $\mathbf{x} \in \mathbb{R}^n$.
 - (b) State the Cauchy-Schwarz inequality. State and prove the triangle inequality.
 - (c) Assume $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $|\mathbf{x}| = 1$, $|\mathbf{y}| = 4$, and $(\mathbf{x}, \mathbf{y}) = -2$. What is the length of $\mathbf{x} \mathbf{y}$? What is the angle between \mathbf{x} and $4\mathbf{x} + \mathbf{y}$?
- 6. (a) Explain how the Gram-Schmidt orthogonalization procedure works.
 - (b) Compute the Gram-Schmidt orthogonalization of the vectors

$$\mathbf{a_1} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}, \ \mathbf{a_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{a_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

CONTINUED

(c) Assume that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthonormal basis of \mathbb{R}^n . Let A be the $n \times n$ matrix whose kth column is \mathbf{v}_k . Show that $A^T A$ is the identity matrix.

MATHB611

- 7. (a) Define the determinant of an $n \times n$ matrix.
 - (b) Show that an $n \times n$ matrix A is invertible if and only if its determinant is non-zero.
 - (c) Let B be the following matrix:

~

)

ې ب

1

$$B = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 3 & 3 & 3 & 3 \\ 3 & 3 & -2 & 1 \\ 2 & 3 & -3 & 1 \end{pmatrix}.$$

Compute its determinant. Are the rows of B linearly independent or not?

MATHB611

END OF PAPER

••••

ŝ.

- 3