UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

Mathematics B611: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE : MATHB611

UNIT VALUE : 0.50

DATE : 21-MAY-03

TIME : 10.00

TIME ALLOWED : 2 Hours

03-C0907-3-130 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Explain what is meant by an elementary row operation, by an elementary matrix and by the reduced row echelon form of a matrix.
 - (b) Find the reduced row echelon form of the matrix

$$A = \begin{pmatrix} 3 & 2 & 3 & -2 & 5 & 7 \\ 1 & 0 & 3 & 0 & 1 & -2 \\ 5 & 2 & 9 & -2 & 7 & 3 \\ 0 & 0 & 1 & 1 & 4 & -7 \\ 2 & 2 & 1 & -1 & 8 & 2 \end{pmatrix}.$$

- (c) What is the rank of A?
- 2. (a) Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be vectors in a vector space V. Explain what is meant by saying that
 - (i) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent;
 - (ii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ span a vector space V;
 - (iii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ form a basis of V.
 - (b) Let the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be linearly independent. Show that the following three vectors: $\mathbf{w}_1 = \mathbf{v}_2 \mathbf{v}_1, \mathbf{w}_2 = \mathbf{v}_3 \mathbf{v}_2, \mathbf{w}_3 = \mathbf{v}_1 + \mathbf{v}_3$ are linearly independent.
 - (c) Find a basis for the vector space V consisting of all vectors $\begin{pmatrix} x \\ y \\ z \\ s \end{pmatrix} \in \mathbb{R}^4$ satisfying x - y = z = -s. What is the dimension of V?
- 3. (a) Give the definition of (i) a symmetric matrix and (ii) a skew-symmetric matrix.
 - (b) Show that if A and B are skew-symmetric matrices then $C = AB^2 + B^2A + BAB$ is skew-symmetric.
 - (c) Prove that every $n \times n$ matrix A can be expressed as a sum A = B + C where B is symmetric and C is skew-symmetric. Show that such a decomposition is unique.

MATHB611

PLEASE TURN OVER

- 4. (a) Let A and B be $n \times n$ invertible matrices. Prove that AB is also invertible and find its inverse.
 - (b) Let A be an $n \times n$ matrix. Show that A is invertible if and only if the rank of A equals n.
 - (c) Find the inverse of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & -1 \end{array}\right).$$

- 5. (a) Define the scalar product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and the length of a vector $\mathbf{x} \in \mathbb{R}^n$.
 - (b) State and prove the Cauchy-Schwarz inequality.
 - (c) Assume $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $|\mathbf{x}| = 1$, $|\mathbf{y}| = 2$, and $(\mathbf{x}, \mathbf{y}) = 1$. What is the length of $3\mathbf{x} 2\mathbf{y}$? What is the cosine of the angle between $\mathbf{x} + 2\mathbf{y}$ and $\mathbf{x} \mathbf{y}$?
- 6. (a) Explain how the Gram-Schmidt orthogonalization procedure works.
 - (b) Compute the Gram-Schmidt orthogonalization of the vectors

$$\mathbf{a}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{a}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- (c) Assume that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis of \mathbb{R}^n . Let $\mathbf{x} \in \mathbb{R}^n$. Find the decomposition of \mathbf{x} as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- 7. (a) Define the determinant of an $n \times n$ matrix.
 - (b) Show that an $n \times n$ matrix A is invertible if and only if its determinant is non-zero.
 - (c) Let B be the following matrix:

$$B = \begin{pmatrix} 1 & 1 & -2 & 4 \\ 2 & 3 & 7 & -3 \\ 3 & 3 & -6 & -3 \\ 4 & 4 & 5 & -5 \end{pmatrix}.$$

Compute its determinant. Are the rows of *B* linearly independent or not? MATHB611 END OF PAPER