UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. B.Sc. (Econ)

Mathematics B611: Mathematics for Students of Economics, Statistics & Related Disciplines

COUR	SE CODE		:	MATHB611
UNIT	VALUE		:	0.50
DATE			:	16-MAY-02
TIME		• .	:	14.30
TIME	ALLOWED		:	2 hours

02-C0905-3-120

© 2002 University of London

-

TURN OVER

-

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Explain what is meant by an elementary row operation, by the row echelon form and the reduced row echelon form of a matrix.
 - (b) The matrix

$$M = \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 7 \\ 0 & 2 & 0 & 6 & -4 & 2 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

has been obtained by elementary row operations from some matrix A. Find the reduced row echelon form of the matrix A.

- (c) What is the rank of A?
- 2. (a) Let v_1, v_2, \ldots, v_n be vectors in a vector space V Explain what is meant by saying that
 - (i) v_1, v_2, \ldots, v_n are linearly independent;
 - (ii) v_1, v_2, \ldots, v_n span a vector space V;
 - (iii) v_1, v_2, \ldots, v_n form a basis of V.
 - (b) Let the vectors v_1, \ldots, v_n be linearly dependent. Show that at least one of these vectors can be written as a linear combination of the others.
 - (c) Find a basis for the vector space V consisting of all vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ satisfying -3x = 5y = 7z. What is the dimension of V?
- 3. (a) Give the definition of (i) an eigenvalue, and (ii) an eigenvector of an $n \times n$ matrix A.
 - (b) Define the characteristic polynomial of A and show that λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A.
 - (c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

PLEASE TURN OVER

MATHB611

- 4. (a) Assume *A* and *B* are *n* by *n* invertible matrices. Prove that *AB* is also invertible and find its inverse.
 - (b) Let A be an $n \times n$ matrix. Show that A is invertible if and only if its reduced row echelon form is the identity matrix.
 - (c) Find the inverse of the matrix

$$A = \left(\begin{array}{rrr} 2 & 1 & -3 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{array}\right).$$

- 5. (a) Define the scalar product of two vectors $x, y \in \mathbb{R}^n$ and the length of a vector $x \in \mathbb{R}^n$.
 - (b) State the Cauchy-Schwarz inequality. State and prove the triangle inequality.
 - (c) Assume $x, y \in \mathbb{R}^n$, |x| = 3, |y| = 1, and (x, y) = -1. What is the length of x 2y? What is the cosine of the angle between x + y and x y?
- 6. (a) Explain how the Gram-Schmidt orthogonalization procedure works.
 - (b) Compute the Gram-Schmidt orthogonalization of the vectors

$$a_1 = \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight), \ a_2 = \left(egin{array}{c} 1 \ 0 \ -2 \end{array}
ight), \ a_3 = \left(egin{array}{c} 0 \ 2 \ 1 \end{array}
ight)$$

- (c) Assume that v_1, v_2, \ldots, v_n is an orthogonal basis of \mathbb{R}^n . Let A be the $n \times n$ matrix whose kth column is v_k . Show that $A^T A$ is a diagonal matrix.
- 7. (a) Define the determinant of an $n \times n$ matrix.
 - (b) Show that an $n \times n$ matrix A is invertible if and only if its determinant is non-zero.
 - (c) Let B be the following matrix:

$$B = \left(egin{array}{ccccc} 2 & 3 & 1 & 1 \ 2 & 0 & -1 & -2 \ 0 & 2 & 0 & -3 \ 2 & 0 & 1 & 1 \end{array}
ight).$$

Compute its determinant. Are the rows of B linearly independent or not? MATHB611 END OF PAPER

2