University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

```
B.A. B.Sc. B.Sc.(Econ)M.Sci.
Mathematics B51B: Mathematics for Students of Economics, Statistics & Related Disciplines
COURSE CODE : MATHB51B
UNIT VALUE : 0.50
DATE : 12-MAY-06
TIME : 14.30
TIME ALLOWED : 2 Hours
```

Answer ALL questions from Section A.
All questions from Section B may be attempted, but only marks obtained on the best two solutions from Section B will count.
The use of an electronic calculator is not permitted in this examination.

Section A

1. (a) Maximize $f(x, y)=2 x^{1 / 3} y^{2 / 3}$ subject to $4 x+y=12$.
(b) Maximize and minimize $g(x, y)=x^{2}+2 y^{2}$ subject to $x \geqslant-2, y \leqslant 3$ and $y \geqslant x-2$.
(c) Maximize $h(x, y)=x^{2}+3 y^{2}$ subject to $x^{2}+y^{2} \leqslant 9$.
2. (a) Find an invertible matrix P such that $P^{-1} A P$ is diagonal, where A is the matrix given below

$$
A=\left[\begin{array}{ll}
5 & -4 \\
2 & -1
\end{array}\right]
$$

(b) Solve the following system of simultaneous difference equations subject to the initial conditions $x_{0}=2$ and $y_{0}=0$

$$
\begin{aligned}
x_{n+1} & =3 x_{n}+y_{n} \\
y_{n+1} & =x_{n}+3 y_{n} .
\end{aligned}
$$

3. (a) Solve the differential equation

$$
x^{3}+\frac{\mathrm{d} y}{\mathrm{~d} x}(y+1)^{2}=0
$$

subject to the initial condition $y=-1$ at $x=0$.
(b) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y}{4-3 x-3 y}
$$

subject to the initial condition $y=1$ at $x=0$.

Section B

4. (a) Solve the difference equation

$$
x_{n+2}-4 x_{n+1}+3 x_{n}=-6
$$

subject to the initial conditions $x_{0}=3$ and $x_{1}=8$.
(b) Solve the difference equation

$$
x_{n+2}-4 x_{n+1}+4 x_{n}=2^{n}
$$

subject to the initial conditions $x_{0}=3$ and $x_{1}=\frac{33}{4}$.
5. (a) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=y^{3}(1+\ln x)
$$

corresponding to the initial condition $y=1$ at $x=1$.
(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=20 \cosh x
$$

corresponding to the initial conditions $y=1$ at $x=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{22}{3}$ at $x=0$.
6. (a) Evaluate the following integral, where R is the region of the plane satisfying $0 \leqslant x \leqslant 3$ and $0 \leqslant y \leqslant 4$

$$
\iint_{R} x y \mathrm{~d} A .
$$

(b) Let $k \geqslant 1$ be an integer. Evaluate the following integral, where S is the entire plane

$$
\iint_{S}\left(x^{2}+y^{2}\right)^{k} e^{-\left(x^{2}+y^{2}\right)^{k+1}} \mathrm{~d} A
$$

(c) Using the change of variables $u=x+y$ and $v=y /(x+y)$, or otherwise, evaluate the following integral, where T is the region given by $0 \leqslant y \leqslant 1-x$ and $0 \leqslant x \leqslant 1$

$$
\iint_{T} e^{y /(x+y)} \mathrm{d} A
$$

7. (a) Find the Maclaurin series expansion of $f(x)=\frac{1}{1+x}$.
(b) Evaluate the following integral. Your final answer should not contain the gamma function.

$$
\int_{0}^{1} \sqrt{\ln \left(\frac{1}{x}\right)} d x
$$

(c) Express the complex number $(1+i)^{1+i}$ in Cartesian form.

