University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)LL.B.

Mathematics B51B: Mathematics for Students of Economics, Statistics \& Related Disciplines

COURSE CODE : MATHB51B

UNIT VALUE $\quad: \mathbf{0 . 5 0}$

DATE : 14-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

Answer ALL questions from Section A.
All questions from Section B may be attempted, but only marks obtained on the best two solutions from Section B will count.
The use of an electronic calculator is not permitted in this examination.

Section A

1. (a) Maximize $f(x, y)=2 x^{1 / 4} y^{3 / 4}$, subject to the constraint $10 x+7 y=6$.
(b) Minimize $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}$, subject to the constraints $x_{1}+x_{2}+3 x_{3}=5$ and $x_{2}+x_{4}+x_{5}=3$.
2. (a) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{2} y
$$

subject to the initial condition $y=2$ at $x=0$.
(b) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=e^{x^{2}},
$$

subject to the initial condition $y=0$ at $x=1$.
3. (a) Find the general solution of the following system of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1 \\
& x_{1}-x_{2}+x_{3}-x_{4}+x_{5}=3 \\
& x_{1}+x_{2}-x_{3}-x_{4}-x_{5}=3 .
\end{aligned}
$$

(b) (i) For which values of λ is the matrix A invertible?

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

(ii) Find the inverse of A when $\lambda=2$.

Section B

4. (a) Solve the difference equation

$$
x_{n+2}-5 x_{n+1}+6 x_{n}=4^{n+1}
$$

subject to the initial conditions $x_{0}=x_{1}=0$.
(b) Solve the difference equation

$$
x_{n+2}-3 x_{n+1}+2 x_{n}=10,
$$

subject to the initial conditions $x_{0}=x_{1}=0$.
5. (a) Give the solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-7 \frac{\mathrm{~d} y}{\mathrm{~d} x}+12 y=e^{3 x}
$$

corresponding to the initial conditions $y=1$ at $x=0$ and $\frac{d y}{d x}=0$ at $x=0$.
(b) Give the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=3 x \cos 2 x
$$

6. (a) Evaluate the integral

$$
\iint_{R} x^{3} y \mathrm{~d} A
$$

where R is the region of the plane satisfying $x \geqslant 0$ and $x \leqslant y \leqslant \sqrt{x}$.
(b) By changing to polar coordinates or otherwise evaluate the integral

$$
\int_{0}^{5 / \sqrt{2}} \int_{y}^{\sqrt{25-y^{2}}}\left(x^{2}+y^{2}\right) e^{-\left(x^{2}+y^{2}\right)^{2}} \mathrm{~d} x \mathrm{~d} y
$$

7. Evaluate the following integrals expressing your answers in terms of the gamma function. (Any identity you use relating the beta and gamma functions should be clearly stated.)
(a) $\int_{0}^{1} \sqrt{\ln \left(\frac{1}{x}\right)} \mathrm{d} x$,
(b) $\int_{0}^{\pi / 2} \sin ^{n} x \mathrm{~d} x$,
(c) $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{4}}}$.
