## EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.A. B.Sc. B.Sc.(Econ)

Mathematics B51B: Mathematics for Students of Economics, Statistics \& Related Disciplines

COURSE CODE : MATHB51B

UNIT VALUE : 0.50

DATE : 06-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five questions will count.
The use of an electronic calculator is not permitted in this examination.

1. Find the maximum and minimum distances from $(0,0)$ to the ellipse with equation

$$
x^{2}-x y+y^{2}+2 x+2 y-5=0 .
$$

2. Solve the following differential equations.
(a) $\frac{d y}{d x}=\frac{3 x-2 y}{2 x-3 y}$.
(b) $\frac{d y}{d x}-y \tan (x)=4 x^{3} \sec (x), \quad$ with $y=3$ at $x=0$.
(c) $x^{2} \frac{d y}{d x}+x y-y^{3}=0$.
3. Solve the following differential equations.
(a) $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=32 e^{2 x}+8 \cos 2 x$.
(b) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y=10 x e^{-x}, \quad$ with $y=\frac{4}{9}$ and $\frac{d y}{d x}=\frac{11}{3}$ at $x=0$.
4. Solve the following difference equations.
(a) $\quad x_{n}=2 x_{n-1}-\frac{1}{4} n^{2}+2^{n}-\frac{1}{2}$.
(b) $x_{n}-x_{n-1}=2\left(x_{n-1}-x_{n-2}\right)+2(1-n), \quad$ with $x_{0}=4$ and $x_{1}=10$.
5. (a) Calculate the integral

$$
\int_{0}^{1} \int_{x^{5}}^{1} y d y d x
$$

Reverse the order of integration and again calculate the integral.
(b) By reversing the order of integration, calculate the integral

$$
\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y
$$

(c) Prove that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}
$$

6. Evaluate the following integrals, expressing your answers in terms of the beta function and gamma function.
(a) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}$.
(b) $\int_{0}^{\pi / 2} \sqrt{\sin \vartheta} d \vartheta$.
(c) $\int_{0}^{\pi / 2} \frac{d \vartheta}{\sqrt{1-\frac{1}{2} \sin ^{2} \vartheta}}$.
7. Find the values of $a$ and $b$ for which the system of simultaneous linear equations

$$
\begin{array}{r}
2 x+y+z=a \\
x-2 y-z=b \\
x+3 y+a z=1
\end{array}
$$

has
(a) no solution,
(b) more than one solution,
(c) just one solution.

Find the complete set of solutions in cases (b) and (c).

