UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

Mathematics A3: Mathematics For Physical Science

COURSE CODE	: MATHA003
UNIT VALUE	: 0.50
DATE	: 11-MAY-05
TIME	: 10.00
TIME ALLOWED	: 2 Hours

05-C0907-3-30 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Calculate the following integrals, showing full workings in each case.

$$\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3-x^{2}}} dx, \qquad \int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos\theta} d\theta,$$
$$\int_{0}^{\frac{\pi}{4}} \sin^{4}\theta d\theta, \qquad \int_{0}^{1} (x^{2}-1)e^{-x} dx.$$

2. Find Maclaurin series up to and including x^5 for e^x , $\cos x$ and $\sin x$. Use these series to verify that

$$e^{i\theta} = \cos\theta + i\sin\theta$$

as far as terms in θ^5 .

\$

j.

- 3. (a) State de Moivre's theorem, and then use it to derive expressions for $\cos 3\theta$ and $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.
 - (b) Find all of the roots of equation

$$\frac{z}{\bar{z}^2} = -1,$$

and draw them on an Argand diagram.

- 4. (a) Find the vector and cartesian equations of the plane which passes through the points (1, 2, -1), (2, 3, 1) and (3, -1, 2).
 - (b) Find the point of intersection of the two lines

*L*₁:
$$\mathbf{r}_1 = (1, 0, 1) + t_1(1, 2, 3),$$

*L*₂: $\mathbf{r}_2 = (1, -2, 1) + t_2(\frac{1}{3}, 1, 1).$

PLEASE TURN OVER

MATHA003

- 5. (a) Find the equation of the line in the (x, y)-plane which passes through the point A = (2, 3) and which is parallel to the vector $5\underline{i} 2\underline{j}$. Find the equation of the line in the (x, y)-plane which is perpendicular to the first line and also passes through the point A.
 - (b) OABC is a parallelogram with $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$. If D is the mid-point of OB, find the following vectors in terms of \underline{a} and \underline{c} :

$$\overrightarrow{OB}$$
, \overrightarrow{DB} , \overrightarrow{CD} , \overrightarrow{DA} .

Hence show that D is also the mid-point of AC.

6. An infectious disease is introduced into a population. Suppose P(t) is the proportion of people exposed to the disease within t years of its introduction. If

$$\frac{dP}{dt} = \frac{2-P}{4}$$

and P(0) = 0, after how many years will 80% of the population be infected? (Assume $\ln \frac{5}{3} \approx 0.5$.)

7. Using Gaussian elimination determine the values of a and b for which the equations

$$x_1 - 2x_2 + 3x_3 = 2,$$

$$2x_1 - x_2 + 2x_3 = 3,$$

$$x_1 + x_2 + ax_3 = b.$$

have

- (a) a unique solution,
- (b) no solutions,
- (c) an infinite number of solutions.

In the cases (a) and (c), determine the solutions by back substitution.

MATHA003

END OF PAPER

۲