University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

Mathematics A3: Mathematics For Physical Science

COURSE CODE : MATHA003

UNIT VALUE $\quad \mathbf{0 . 5 0}$

DATE : 11-MAY-05

TIME : 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Calculate the following integrals, showing full workings in each case.

$$
\begin{aligned}
& \int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3-x^{2}}} d x, \quad \int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos \theta} d \theta \\
& \int_{0}^{\frac{\pi}{4}} \sin ^{4} \theta d \theta, \quad \int_{0}^{1}\left(x^{2}-1\right) e^{-x} d x
\end{aligned}
$$

2. Find Maclaurin series up to and including x^{5} for $e^{x}, \cos x$ and $\sin x$. Use these series to verify that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

as far as terms in θ^{5}.
3. (a) State de Moivre's theorem, and then use it to derive expressions for $\cos 3 \theta$ and $\sin 3 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
(b) Find all of the roots of equation

$$
\frac{z}{\bar{z}^{2}}=-1,
$$

and draw them on an Argand diagram.
4. (a) Find the vector and cartesian equations of the plane which passes through the points $(1,2,-1),(2,3,1)$ and (3, $-1,2)$.
(b) Find the point of intersection of the two lines

$$
\begin{array}{ll}
L_{1}: & \mathbf{r}_{1}=(1,0,1)+t_{1}(1,2,3) \\
L_{2}: & \mathbf{r}_{2}=(1,-2,1)+t_{2}\left(\frac{1}{3}, 1,1\right)
\end{array}
$$

5. (a) Find the equation of the line in the (x, y)-plane which passes through the point $A=(2,3)$ and which is parallel to the vector $5 \underline{i}-2 \underline{j}$. Find the equation of the line in the (x, y)-plane which is perpendicular to the first line and also passes through the point A.
(b) $O A B C$ is a parallelogram with $\overrightarrow{O A}=\underline{a}$ and $\overrightarrow{O C}=\underline{c}$. If D is the mid-point of $O B$, find the following vectors in terms of \underline{a} and \underline{c} :

$$
\overrightarrow{O B}, \quad \overrightarrow{D B}, \quad \overrightarrow{C D}, \quad \overrightarrow{D A}
$$

Hence show that D is also the mid-point of $A C$.
6. An infectious disease is introduced into a population. Suppose $P(t)$ is the proportion of people exposed to the disease within t years of its introduction. If

$$
\frac{d P}{d t}=\frac{2-P}{4}
$$

and $P(0)=0$, after how many years will 80% of the population be infected?(Assume $\ln \frac{5}{3} \approx 0.5$.)
7. Using Gaussian elimination determine the values of a and b for which the equations

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =2, \\
2 x_{1}-x_{2}+2 x_{3} & =3, \\
x_{1}+x_{2}+a x_{3} & =b .
\end{aligned}
$$

have
(a) a unique solution,
(b) no solutions,
(c) an infinite number of solutions.

In the cases (a) and (c), determine the solutions by back substitution.

