University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics A3: Mathematics For Physical Science

COURSE CODE : MATHA003

UNIT VALUE : 0.50

DATE : 14-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) If $z_{1}=2+i, z_{2}=-2+4 i$ and

$$
\frac{1}{z}=\frac{1}{z_{1}}+\frac{1}{z_{2}}
$$

find z in the form $a+b i$. Also, find the modulus and the argument of z.
(b) State de Moivre's theorem, and then use it to find the double-angle formulae $(\sin (2 \theta)=\cdots, \cos (2 \theta)=\cdots)$.
(c) Find the cartesian form of the equation

$$
(z-\bar{z})^{2}=-8(z+\bar{z})
$$

where $z=x+i y$. Sketch the graph of the equation.
2. (a) Consider a triangle $A B C$. Let M and N be respectively the midpoints of sides $A B$ and $A C$. Using vectors, prove that $M N$ is parallel to $B C$ and has half its length.
(b) Consider a quadrilateral $A B C D$, whose vertices are $A=(\alpha, 6,3 \alpha+1), B=$ $(1,1,-1), C=(0,6,1)$ and $D=(-7,11,-15)$, where α is a non-zero real number. Check that A, B, C, D all lie on the same plane, and give the equation of this plane in cartesian form. Use vectors to find for which value of α the quadrilateral $A B C D$ is a rectangle.
3. (a) Find the equation of the plane normal to $\underline{n}=(1,-2,-1)$ passing through $(2,4,-3)$.
(b) Find a parametric equation for the line passing through ($1,-1,2$) parallel to the vector $\underline{b}=(1,2,1)$.
(c) Find the point where the line in (b) meets the plane in (a).
(d) Find the cosine of the angle between \underline{n} and \underline{b}.
4. (a) Differentiate the following with respect to x :

$$
y=\cos ^{-1}\left(x^{4}\right), \quad y=\tan ^{-1}(2 \sqrt{x}), \quad y=\sin ^{-1}\left(\frac{1}{x}\right)
$$

(b) Calculate the following integrals,

$$
\int_{0}^{1} \frac{x}{1+x^{4}} d x, \quad \int_{0}^{\pi / 2} \frac{1}{3+2 \sin \theta} d \theta, \quad \int_{0}^{\pi / 4} \cos ^{4} \theta d \theta
$$

5. Find Maclaurin series up to and including x^{5} for $e^{x}, \cos x$ and $\sin x$. Use these series to verify that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

as far as terms in θ^{5}.
6. Use Gaussian elimination to find the solution of the simultaneous equations

$$
\begin{aligned}
x_{1}-x_{2}-4 x_{3} & =1 \\
2 x_{1}+5 x_{2}-x_{3} & =2 \\
3 x_{1}+2 x_{2}-3 x_{3} & =-1 .
\end{aligned}
$$

Explain briefly how different real number values of c determine the type of solution of the simultaneous equations

$$
\begin{array}{r}
x_{1}-3 x_{2}+x_{3}=c, \\
2 x_{1}+4 x_{2}-2 x_{3}=3, \\
2 x_{1}-6 x_{2}+2 x_{3}=6 .
\end{array}
$$

7. An object is thrown horizontally from the top of a building (100 metres high) with initial speed $v=20$ (metres/second). Determine the path of the object. When and where does it hit the ground? (The acceleration g due to gravity is taken to be $9.81 \mathrm{~m} / \mathrm{s}^{2}$).
