UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Eng. B.Sc. M.Sci.

м •

۴.

÷

Mathematics A3: Mathematics For Physical Science

COURSE CODE	:	MATHA003
UNIT VALUE	:	0.50
DATE	:	24-MAY-02
TIME	:	10.00
TIME ALLOWED	:	2 hours

02-C0894-3-50

© 2002 University of London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State de Moivre's theorem and use it to derive expressions for $\cos 3\theta$ and $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.
 - (b) Find the solutions of

$$z^4 = \frac{1-i}{1+i},$$

in the form $z = r(\cos \theta + i \sin \theta)$ and draw them on an Argand diagram.

- 2. (a) Find the vector and cartesian equations of the plane which passes through the points (1, 2, -1), (2, 3, 1) and (3, -1, 2).
 - (b) Find the point of intersection of the two lines

$$\mathbf{r}_1 = (1,0,1) + t_1(1,2,3)$$

$$\mathbf{r}_2 = (1,-2,1) + t_2(\frac{1}{3},1,1)$$

- 3. (a) Write down the equation of the circle C in the xy-plane, which has its centre at the point (3, -1) and radius 2.
 - (b) Find the equations of the lines which pass through the point (0, 1) and are tangent to the circle C.
 - (c) Find the gradient of the line passing through (0, 1) and the centre of the circle C.

MATHA003

4. (a) Differentiate the following with respect to x:

$$y = \sin^{-1}(\frac{1}{x}),$$
 $y = \tan^{-1}(3x^2).$

(b) Find the following integrals:

$$\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3-x^2}} dx, \qquad \int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos\theta} d\theta, \qquad \int \frac{2x}{x^2-16} dx.$$

- 5. (a) Derive the MacLaurin series for $\sin x$ and $\ln(1 + x)$ up to and including terms of order x^5 .
 - (b) Using these and assuming the geometric series

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}, \quad |r| < 1,$$

find the MacLaurin series for (i)

$$f(x) = \frac{\sin x}{1 - x^2},$$

(ii)

$$f(x) = \frac{\ln(1+x^2)}{1+x}$$

up to and including terms of order x^4 .

MATHA003

- 6. Solve each of the following systems of equations using Gaussian or Gauss-Jordon elimination, giving all solutions or showing there is no solution.
 - (a)

$$\begin{array}{rcrcrcr} x+y-z &=& 7,\\ 4x+5y+5z &=& 4,\\ 6x+7y+3z &=& 18. \end{array}$$

(b)

$$\begin{array}{rcl} x - y - 2z &=& -3, \\ x &+ 2z &=& 3, \\ 2x - 3y - 7z &=& -11 \end{array}$$

(c)

$$3x + y + 3z = 1,x + y + 2z = 1,4x + 2y + 5z = 3.$$

7. (a) Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{4}{1+x}y = 3, \quad y(0) = 2.$$

(b) An infectious disease is introduced into a population. Suppose P(t) is the proportion of people exposed to the disease within t years of its introduction. If

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{(2-P(t))}{4}$$

and P(0) = 0, after how many years will 80% of the population be infected? (Assume $\ln \frac{5}{3} \approx 0.5$.)