UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

.' \ \` * {

1 1

Mathematics E004: Mathematics For Engineers

COURSE CODE	:	MATHE004
UNIT VALUE	:	0.50
DATE	:	25-MAY-05
TIME	:	14.30
TIME ALLOWED	:	2 Hours

05-C0951-3-40 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count. The use of an electronic calculator is permitted in this examination.

1. Simplify

}

(a)
$$\frac{(x-y+z)(x^2-2xy+y^2+z^2)(x-y+2z)(x-y)}{(x-y)((x-y)^2+3z(x-y)+2z^2)},$$

(b)
$$\left(\frac{(\sqrt[4]{y})^2 z^6}{\sqrt[4]{x}}\right) \frac{\sqrt[3]{y}}{\left(x^{\frac{1}{2}} z y^2\right)^3},$$

(c) $x(x+y)^2 - (x-2y)^3 + (y-x)^3.$

- 2. Differentiate the following functions of x
 - (a) $(x+1)^{\frac{1}{2}} \exp(x^2)$, (b) $\sin(\cos^2 x)$, (c) $\ln \frac{3x^3}{(x+1)(x+2)}$, (d) $\frac{\tan x}{x^2+1}$.
- 3. Write down Maclaurin's formula for expanding a function f(x) as a series in ascending powers of x, and use it to show that, as far as the term in x^4 ,

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \dots$$

Show that $\ln\left(\frac{y}{y-1}\right) = -\ln\left(1-\frac{1}{y}\right)$ and hence write down the expansion for $\ln\left(\frac{y}{y-1}\right)$ as a series of **descending** powers of y as far as the term in y^{-4} . Set y = 5 in your result to estimate $\ln(1.25)$ correct to four decimal places.

MATHE004

PLEASE TURN OVER

- 37. 1
- 4. A circle centre C has radius 5a. A chord AB of length 3a is drawn. The tangents to the circle at A and B meet at T. Sketch the circle, chord and tangents.

Denote the angle ACT by α and show that $\sin \alpha = 0.3$. Find $\tan \alpha$ and the length AT.

Show that the area enclosed by TA, TB and the **major** arc AB is $78 \cdot 8a^2$ correct to one decimal place.

5. Find the following

(i)
$$\int \frac{x^2}{1+x^3} dx,$$

(ii)
$$\int x \cos x \, dx,$$

(iii)
$$\int x^{-\frac{2}{3}} \ln(x^{\frac{1}{3}}) dx.$$

- 6. Find the stationary values of the following functions and determine their nature
 - (i) $y = 3x^4 8x^3 + 6x^2$,
 - (ii) $y = x^2 e^x$.
- 7. (i) Find the area under the curve $y = (1 x^2)^{-\frac{1}{2}}$ between x = 0 and x = 1.
 - (ii) Find the volume of the solid of revolution obtained by rotating the curve y = x(1-x) between x = 0 and x = 1 about the x-axis.

MATHE004

8. a) Solve the differential equation

с¥р

$$\frac{dy}{dx} = \frac{y-1}{1+x^2}$$

given that y = 4 when x = 1.

b) Solve the differential equation

$$\frac{d^2y}{dx^2} + 16y = 0$$

given that y = 1 and $\frac{dy}{dx} = 4$ when x = 0. Find the amplitude of y.

MATHE004