University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Eng. M.Eng.

Mathematics E004: Mathematics For Engineers

COURSE CODE : MATHE004

UNIT VALUE : 0.50

DATE : 25-MAY-05

TIME
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count. The use of an electronic calculator is permitted in this examination.

1. Simplify
(a) $\frac{(x-y+z)\left(x^{2}-2 x y+y^{2}+z^{2}\right)(x-y+2 z)(x-y)}{(x-y)\left((x-y)^{2}+3 z(x-y)+2 z^{2}\right)}$,
(b) $\left(\frac{(\sqrt[4]{y})^{2} z^{6}}{\sqrt[4]{x}}\right) \frac{\sqrt[3]{y}}{\left(x^{\frac{1}{2}} z y^{2}\right)^{3}}$,
(c) $x(x+y)^{2}-(x-2 y)^{3}+(y-x)^{3}$.
2. Differentiate the following functions of x
(a) $(x+1)^{\frac{1}{2}} \exp \left(x^{2}\right)$,
(b) $\sin \left(\cos ^{2} x\right)$,
(c) $\ln \frac{3 x^{3}}{(x+1)(x+2)}$,
(d) $\frac{\tan x}{x^{2}+1}$.
3. Write down Maclaurin's formula for expanding a function $f(x)$ as a series in ascending powers of x, and use it to show that, as far as the term in x^{4},

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots
$$

Show that $\ln \left(\frac{y}{y-1}\right)=-\ln \left(1-\frac{1}{y}\right)$ and hence write down the expansion for $\ln \left(\frac{y}{y-1}\right)$ as a series of descending powers of y as far as the term in y^{-4}. Set $y=5$ in your result to estimate $\ln (1 \cdot 25)$ correct to four decimal places.
4. A circle centre C has radius $5 a$. A chord $A B$ of length $3 a$ is drawn. The tangents to the circle at A and B meet at T. Sketch the circle, chord and tangents.

Denote the angle $A C T$ by α and show that $\sin \alpha=0.3$. Find $\tan \alpha$ and the length $A T$.

Show that the area enclosed by $T A, T B$ and the major arc $A B$ is $78 \cdot 8 a^{2}$ correct to one decimal place.
5. Find the following
(i) $\int \frac{x^{2}}{1+x^{3}} d x$,
(ii) $\int x \cos x d x$,
(iii) $\int x^{-\frac{2}{3}} \ln \left(x^{\frac{1}{3}}\right) d x$.
6. Find the stationary values of the following functions and determine their nature
(i) $y=3 x^{4}-8 x^{3}+6 x^{2}$,
(ii) $y=x^{2} e^{x}$.
7. (i) Find the area under the curve $y=\left(1-x^{2}\right)^{-\frac{1}{2}}$ between $x=0$ and $x=1$.
(ii) Find the volume of the solid of revolution obtained by rotating the curve $y=x(1-x)$ between $x=0$ and $x=1$ about the x-axis.
8. a) Solve the differential equation

$$
\frac{d y}{d x}=\frac{y-1}{1+x^{2}}
$$

given that $y=4$ when $x=1$.
b) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+16 y=0
$$

given that $y=1$ and $\frac{d y}{d x}=4$ when $x=0$. Find the amplitude of y.

