UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B6: Mathematical Methods In Chemistry

COURSE CODE : MATHB006

UNIT VALUE : 0.50

DATE : 27-MAY-03

TIME
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Find the general solution of the differential equation

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{2 x}+6 x^{2}
$$

(b) Using the substitution $x=t^{3}$, convert the differential equation

$$
9 x^{2} y^{\prime \prime}+6 x y^{\prime}+\lambda^{2} x^{2 / 3} y=0
$$

where $\lambda \neq 0$ is real, into one with constant coefficients. Non-zero solutions to the differential equation are sought which satisfy $y=0$ when $x=0$ and $x=1$. Show that such solutions are possible only if $\lambda=n \pi, n= \pm 1, \pm 2, \pm 3, \ldots$.
2. Chebyshev's equation is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0, \quad-1<x<1
$$

where k is a real constant.
By substituting the series $y=\sum_{m=0}^{\infty} a_{m} x^{m}$ into Chebyshev's equation, show that

$$
a_{m+2}=\frac{m^{2}-k^{2}}{(m+2)(m+1)} a_{m},
$$

for all $m \geq 0$. If $k=n$ is a positive integer, explain why there is a polynomial solution of degree $n, T_{n}(x)$, to Chebyshev's equation.
Use the substitution $x=\cos \theta, 0<\theta<\pi$, to show that Chebyshev's equation transforms into a second order ODE with constant coefficients. Find the general solution of this equation.
The Chebyshev polynomial solutions, $T_{n}(x)$, are defined as

$$
T_{n}(x)=\cos \left[n \cos ^{-1} x\right], \quad n=0,1,2, \ldots
$$

Verify that the Chebyshev polynomials are a class of solutions which belong to the general solution found above.
3. (a) Legendre's differential equation is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\alpha(\alpha+1) y=0
$$

where α is a constant. When $\alpha=n$ is a positive integer, Legendre's equation has a polynomial solution $P_{n}(x)$.
Let $P_{n}(x)$ and $P_{m}(x)$ be two polynomial solutions of Legendre's equation with $n \neq m$. Starting from Legendre's equation, show that

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0
$$

(b) Given that

$$
\int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\frac{2}{2 n+1}
$$

show that if a function $f(x)$ is written as a series of Legendre polynomials i.e.

$$
f(x)=\sum_{k=0}^{\infty} \alpha_{k} P_{k}(x)
$$

then the coefficients $\alpha_{k}, k=0,1,2, \ldots$, are given by

$$
\alpha_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) d x
$$

(c) Find the first three terms in the Legendre polynomial expansion of $y=|x|$.
[Hint: You may assume $P_{0}(x)=1, P_{1}(x)=x$ and $P_{2}(x)=\left(3 x^{2}-1\right) / 2$.]
4. (a) Write down the generating function for Legendre polynomials $P_{n}(x)$. Use it to show $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
(b) In plane polar coordinates, P is the point $(a, 0)$ and Q is the point (r, θ). If R is the distance $P Q$ and $a<r$ then show

$$
\frac{1}{R}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{n} P_{n}(\cos \theta)
$$

(c) Two electric charges of strength $+e$ and $-e$ are located at $(+a, 0)$ and ($-a, 0$). A point S is at distance r from the midpoint O of the line joining the two charges. The line $O S$ makes an angle θ with the line joining the two charges. Find the electric potential V at S in terms of an infinite series of Legendre polynomials. Show that the limiting value of V as $a \rightarrow 0$ and $e \rightarrow \infty$ such that $e a$ remains constant and equal to q is

$$
V=\frac{2 q}{r^{2}} P_{1}(\cos \theta)
$$

[Hint: the electric potential V due to a point charge e at a distance R from the charge is given by $V=e / R$.]
5. (a) Define a group. Explain what is meant by saying two groups are isomorphic.
(b) Consider the set of all matrices of the form

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)
$$

where $a \neq 0$ is a real number. Show that the set forms a group under matrix multiplication. Find, giving reasons, another group which is isomorphic to this group.
6. (a) Define what is meant by (i) a skew-Hermitian matrix, and (ii) a unitary matrix.
(b) For any invertible matrix C show that $\left(C^{T}\right)^{-1}=\left(C^{-1}\right)^{T}$.
(c) Prove that if A is skew-Hermitian then $(I-A)(I+A)^{-1}$ is unitary (assuming $I+A$ is invertible).
7. The motion of two linked particles is governed by the pair of differential equations

$$
\begin{aligned}
& \ddot{x}_{1}+2 x_{1}-x_{2}=0, \\
& \ddot{x}_{2}-x_{1}+2 x_{2}=0 .
\end{aligned}
$$

Find the general solution for this system.
If the system is released from rest with $x_{1}=2$ and $x_{2}=0$ at $t=0$, show that

$$
x_{1}=\cos t+\cos \sqrt{3} t
$$

Find also x_{2}.

