UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B6: Mathematical Methods In Chemistry

COURSE CODE	:	MATHB006
UNIT VALUE	:	0.50
DATE	:	27-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0898-3-40 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Find the general solution of the differential equation

$$y'' - 5y' + 6y = 2e^{2x} + 6x^2.$$

(b) Using the substitution $x = t^3$, convert the differential equation

$$9x^2y'' + 6xy' + \lambda^2 x^{2/3}y = 0,$$

where $\lambda \neq 0$ is real, into one with constant coefficients. Non-zero solutions to the differential equation are sought which satisfy y = 0 when x = 0 and x = 1. Show that such solutions are possible only if $\lambda = n\pi$, $n = \pm 1, \pm 2, \pm 3, \ldots$

2. Chebyshev's equation is

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + k^2y = 0, \quad -1 < x < 1,$$

where k is a real constant.

By substituting the series $y = \sum_{m=0}^{\infty} a_m x^m$ into Chebyshev's equation, show that

$$a_{m+2} = \frac{m^2 - k^2}{(m+2)(m+1)} a_m,$$

for all $m \ge 0$. If k = n is a positive integer, explain why there is a polynomial solution of degree $n, T_n(x)$, to Chebyshev's equation.

Use the substitution $x = \cos \theta$, $0 < \theta < \pi$, to show that Chebyshev's equation transforms into a second order ODE with constant coefficients. Find the general solution of this equation.

The Chebyshev polynomial solutions, $T_n(x)$, are defined as

$$T_n(x) = \cos[n\cos^{-1}x], \quad n = 0, 1, 2, \dots$$

Verify that the Chebyshev polynomials are a class of solutions which belong to the general solution found above.

MATHB6

PLEASE TURN OVER

٠.

3. (a) Legendre's differential equation is

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \alpha(\alpha+1)y = 0,$$

where α is a constant. When $\alpha = n$ is a positive integer, Legendre's equation has a polynomial solution $P_n(x)$.

Let $P_n(x)$ and $P_m(x)$ be two polynomial solutions of Legendre's equation with $n \neq m$. Starting from Legendre's equation, show that

$$\int_{-1}^1 P_n(x)P_m(x)dx = 0.$$

(b) Given that

$$\int_{-1}^{1} (P_n(x))^2 \, dx = \frac{2}{2n+1},$$

show that if a function f(x) is written as a series of Legendre polynomials i.e.

$$f(x) = \sum_{k=0}^{\infty} lpha_k P_k(x),$$

then the coefficients α_k , k = 0, 1, 2, ..., are given by

$$\alpha_k = \frac{2k+1}{2} \int_{-1}^1 f(x) P_k(x) dx.$$

(c) Find the first three terms in the Legendre polynomial expansion of y = |x|.

[Hint: You may assume $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 - 1)/2$.]

CONTINUED

- 4. (a) Write down the generating function for Legendre polynomials $P_n(x)$. Use it to show $P_n(-x) = (-1)^n P_n(x)$.
 - (b) In plane polar coordinates, P is the point (a, 0) and Q is the point (r, θ) . If R is the distance PQ and a < r then show

$$\frac{1}{R} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{a}{r}\right)^n P_n(\cos\theta).$$

(c) Two electric charges of strength +e and -e are located at (+a, 0) and (-a, 0). A point S is at distance r from the midpoint O of the line joining the two charges. The line OS makes an angle θ with the line joining the two charges. Find the electric potential V at S in terms of an infinite series of Legendre polynomials. Show that the limiting value of V as $a \to 0$ and $e \to \infty$ such that ea remains constant and equal to q is

$$V = \frac{2q}{r^2} P_1(\cos\theta).$$

[Hint: the electric potential V due to a point charge e at a distance R from the charge is given by V = e/R.]

- 5. (a) Define a group. Explain what is meant by saying two groups are isomorphic.
 - (b) Consider the set of all matrices of the form

$$\begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix},$$

where $a \neq 0$ is a real number. Show that the set forms a group under matrix multiplication. Find, giving reasons, another group which is isomorphic to this group.

- 6. (a) Define what is meant by (i) a skew-Hermitian matrix, and (ii) a unitary matrix.
 - (b) For any invertible matrix C show that $(C^T)^{-1} = (C^{-1})^T$.
 - (c) Prove that if A is skew-Hermitian then $(I A)(I + A)^{-1}$ is unitary (assuming I + A is invertible).

MATHB6

7. The motion of two linked particles is governed by the pair of differential equations

$$\ddot{x}_1 + 2x_1 - x_2 = 0,$$

$$\ddot{x}_2 - x_1 + 2x_2 = 0.$$

Find the general solution for this system.

If the system is released from rest with $x_1 = 2$ and $x_2 = 0$ at t = 0, show that

 $x_1 = \cos t + \cos \sqrt{3}t.$

Find also x_2 .

MATHB6

END OF PAPER