University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M242: Mathematical Methods 4

COURSE CODE : MATHM242

UNIT VALUE : 0.50

DATE : 28-APR-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1. Use the method of separation of variables to show that the solution of the partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[\left(1-x^{2}\right) \frac{\partial u}{\partial x}\right], \quad-1 \leq x \leq 1, \quad t>0, \quad u(x, 0)=f(x)
$$

that is both analytic for $-1 \leq x \leq 1$ and bounded as $t \rightarrow \infty$, is

$$
u(x, t)=\sum_{n=0}^{n=\infty} \exp (-n(n+1) t) A_{n} P_{n}(x)
$$

Here $P_{n}(x)$ is the Legendre polynomial of order n and A_{n} are constants. Find expressions for A_{n} in terms of $f(x)$. Comment on the solution as $t \rightarrow \infty$.
[You may use the two results below without proof, but you should state clearly any. other results you use.
(a) $y=P_{n}(x)$ is the polynomial solution of Legendre's equation of order n, $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$.
(b) $\int_{-1}^{1} P_{n}^{2}(x) d x=2 /(2 n+1)$.]
2. Show that the differential equation

$$
x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0
$$

where a prime denotes differentiation with respect to x, has a regular singular point at $x=0$.

Show that one solution to the equation is $y(x)=x^{c} \sum_{k=0}^{\infty} a_{k} x^{k}$, where c takes a value to be determined, $a_{0}=1$ and

$$
a_{k}=(-1)^{k} \frac{(k+c+1)}{(k+c)(k+c-1) \cdots(2+c)(1+c)^{2}} .
$$

Show that a second, independent, solution of the equation is

$$
y=\ln x \sum_{k=0}^{\infty} \frac{(-1)^{k}(k+1)}{k!} x^{k}+\sum_{k=1}^{\infty}(-1)^{k}\left[\frac{1}{k!}-\left(1+S_{k}\right) \frac{k+1}{k!}\right] x^{k}, \quad S_{k}=\sum_{r=1}^{r=k} \frac{1}{r} .
$$

3. (a) Legendre's equation of order n is

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad n=0,1,2, \cdots,
$$

where a prime denotes differentiation with respect to x. You are given that it has a polynomial solution $P_{n}(x)$. Show that

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0, \quad n \neq m
$$

(b) The generating function for the Bessel functions $J_{n}(x)$ is

$$
\exp \left[x\left(\omega-\omega^{-1}\right) / 2\right]=\sum_{n=-\infty}^{n=\infty} \omega^{n} J_{n}(x)
$$

Use this to show that
(i) $J_{n}(x)=J_{-n}(-x)$,
(ii) $J_{n}(x)=(-1)^{n} J_{-n}(x)$,
(iii)

$$
\exp (i x \sin \theta)=J_{0}(x)+2 i \sum_{n \text { odd }} J_{n}(x) \sin n \theta+2 \sum_{n \text { even }} J_{n}(x) \cos n \theta
$$

Use the result (iii) to show that, if m is an integer,

$$
\int_{-\pi}^{\pi} \cos m \theta \cos (x \sin \theta) d \theta= \begin{cases}2 \pi J_{m}(x) & \text { if } m \text { is even } \\ 0 & \text { if } m \text { is odd }\end{cases}
$$

4. A function $f(x)$ and its Fourier transform, $\hat{f}(k)$ are related through

$$
\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \quad \text { and } \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k
$$

(a) Show
(i) $\widehat{f^{\prime}(x)}=i k \hat{f}(k)$,
(ii) $(\widehat{f * g})=\sqrt{2 \pi} \hat{f} \hat{g}$, where $(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y$.
(b) Consider the equation for $u(x, y),-\infty<x<\infty, y>0$

$$
\nabla^{2} u=0, \quad u(x, 0)=f(x), \quad u(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty .
$$

Use the Fourier transform to show that

$$
u(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(s)}{y^{2}+(x-s)^{2}} d s
$$

If

$$
f(x)= \begin{cases}1 & |x|<1 \\ 0 & |x|>1\end{cases}
$$

then show that

$$
u(x, y)=\frac{1}{\pi}\left[\tan ^{-1}\left(\frac{1-x}{y}\right)+\tan ^{-1}\left(\frac{1+x}{y}\right)\right] .
$$

5. (a) State the definition of the Laplace transform $\mathcal{L}[h(t)](s)$ for a function $h(t)$, and use it to prove

$$
\begin{gathered}
\mathcal{L}[\mathrm{H}(t)]=1 / s, \quad \mathcal{L}[f(t-a)]=\exp (-a s) \mathcal{L}[f(t)] \\
\mathcal{L}[t f(t)]=-\frac{d}{d s} \mathcal{L}[f(t)]
\end{gathered}
$$

where $a \geq 0, f(t)=0$ for $t<0$ and $\mathrm{H}(t)$ is the Heaviside step function.
(b) Use the Laplace transform to show that the solution to the equation

$$
\frac{d^{2} x}{d t^{2}}+x(t)=t \mathrm{H}(t-a), \quad x(0)=0, \quad \frac{d x}{d t}(0)=0
$$

for $a, t \geq 0$ is

$$
x(t)= \begin{cases}0 & \text { if } t<a \\ t-a \cos (t-a)-\sin (t-a) & \text { if } t \geq a\end{cases}
$$

[You may use the Bromwich inversion formula

$$
x(t)=\frac{1}{2 \pi i} \int_{\gamma} \mathrm{e}^{s t} \mathcal{L}[x](s) d s
$$

with a suitable choice of γ]
6. Consider the integral equation

$$
u(x)+\int_{-\infty}^{\infty} f(x-\xi) u(\xi) d \xi=g(x)
$$

where f and g are given functions and u is to be found. Show that if $\hat{f}(k)$ and $\hat{g}(k)$ are the Fourier transforms of f and g respectively, then

$$
u(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{\hat{g}(k)}{1+\sqrt{2 \pi} \hat{f}(k)} e^{i k x} d k
$$

Show that if

$$
g(x)=e^{-x^{2} / 2}, \quad f(x)=\frac{1}{2} e^{-|x|}
$$

then

$$
u(x)=e^{-x^{2} / 2}-\frac{1}{2 \sqrt{2}} \int_{-\infty}^{\infty} e^{-s^{2} / 2} e^{-\sqrt{2}|x-s|} d s
$$

[You may use the results

$$
\left.\int_{-\infty}^{\infty} \frac{\cos k x d k}{a^{2}+k^{2}}=\frac{\pi}{a} e^{-a|x|}, a>0, \quad \int_{-\infty}^{\infty} e^{-x^{2} / 2} \cos k x d x=\sqrt{2 \pi} e^{-k^{2} / 2} .\right]
$$

