UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M242: Mathematical Methods 4

COURSE CODE : MATHM242

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 16-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1. The function $u(r, \theta)$ satisfies the Laplace equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

in the region $r \geq a, 0 \leq \theta \leq \pi / 2$ where r and θ are the usual polar coordinates. The boundary conditions
$u(r, 0)=0, \quad u(r, \pi / 2)+\frac{\partial u}{\partial \theta}(r, \pi / 2)=0, \quad u(a, \theta)=f(\theta), \quad u(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$, are imposed.
(a) Look for solutions of the type $u(r, \theta)=R(r) \Theta(\theta)$ and show that

$$
\begin{gathered}
\Theta^{\prime \prime}+\lambda^{2} \Theta=0 \\
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda^{2} R=0
\end{gathered}
$$

for some $\lambda>0$. Show also that λ must take values $\lambda=\lambda_{n}, n=1,2, \cdots$, where

$$
\tan \left(\lambda_{n} \pi / 2\right)+\lambda_{n}=0
$$

(b) Show graphically that there are an infinite number of such λ_{n}.
(c) Show that

$$
\frac{\partial u}{\partial r}(a, \theta)=-\sum_{n=1}^{\infty} \frac{\lambda_{n} \int_{0}^{\pi / 2} f(\phi) \sin \lambda_{n} \phi d \phi}{a \int_{0}^{\pi / 2} \sin ^{2} \lambda_{n} \phi d \phi} \sin \lambda_{n} \theta
$$

2. Show that the differential equation

$$
\left(x^{2}-x\right) y^{\prime \prime}+(7 x-1) y^{\prime}+9 y=0
$$

where a prime denotes differentiation with respect to x, has a regular singular point at $x=0$.
Show that one solution to the equation is $y(x)=x^{c} \sum_{k=0}^{\infty} a_{k} x^{k}$, where c takes a value to be determined and

$$
a_{k}=\frac{(k+c+2)^{2}}{(k+c)^{2}} a_{k-1} .
$$

Show that a second, independent, solution of the equation is

$$
y=\frac{1}{4} \ln x \sum_{k=0}^{\infty}(k+2)^{2}(k+1)^{2} x^{k}-\frac{3}{4} \sum_{k=1}^{\infty}(k+2)(k+1) k(k+5 / 3) x^{k} .
$$

3. Legendre's equation of order n is

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad n=0,1,2, \cdots,
$$

where a prime denotes differentiation with respect to x. You are given that it has a polynomial solution $P_{n}(x)$ where

$$
\sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}}
$$

(a) Show

$$
P_{n}(1)=1, \quad P_{2 m+1}(0)=0, \quad P_{2 m}(0)=(-1)^{m}(2 m)!/\left(4^{m}(m!)^{2}\right), \quad m=0,1,2, \cdots .
$$

(b) By considering $h(x)=\left(1-x^{2}\right)^{n}$, or otherwise, show that

$$
v_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

satisfies Legendre's equation of order n.
(c) Show $v_{n}(1)=1$ and deduce $v_{n}(x)=P_{n}(x)$.
4. A function $f(x)$ and its Fourier transform, $\hat{f}(k)$ are related through

$$
\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \quad \text { and } \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k .
$$

(a) Show

$$
(\widehat{f * g})=\sqrt{2 \pi} \hat{f} \hat{g}, \quad \text { where } \quad(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

and deduce

$$
\int_{-\infty}^{\infty} \hat{f}(k) \hat{g}(k) d k=\int_{-\infty}^{\infty} f(-x) g(x) d x
$$

(b) If $h(x)=1 /\left(x^{2}+a^{2}\right), a>0$, show that

$$
\hat{h}(k)=\sqrt{\frac{\pi}{2}} \frac{\exp (-a|k|)}{a},
$$

and deduce that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{a b(a+b)}, \quad a>0, \quad b>0
$$

5. Consider the Laplace equation for $\phi(x, y)$

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0, \quad-\infty<x<\infty, \quad y \geq 0
$$

with boundary conditions

$$
\phi(x, y) \quad \text { bounded as } \quad \sqrt{x^{2}+y^{2}} \rightarrow \infty, \quad \phi(x, 0)=S_{\epsilon}(x),
$$

where

$$
S_{\epsilon}(x)=\operatorname{sgn}(x) \exp (-\epsilon|x|), \quad \epsilon>0, \quad \operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ -1 & x<0 \\ 0 & x=0\end{cases}
$$

(a) Use Fourier transforms to show that

$$
\phi(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{k \exp (-k y)}{\epsilon^{2}+k^{2}} \sin k x d k
$$

(b) Show that, if $\epsilon=0$, then

$$
\frac{\partial \phi}{\partial x}=\frac{2}{\pi} \frac{y}{x^{2}+y^{2}} .
$$

6. The Laplace transform $\mathcal{L}[f](s)=\bar{f}(s)$ of the function $f(t)$ where $f(t)=0$ for $t<0$ is defined as

$$
\bar{f}(s)=\int_{0}^{\infty} \exp (-s t) f(t) d t
$$

(a) Show

$$
\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}, \quad \mathcal{L}[\exp (a t)]=\frac{1}{s-a} \quad \text { and } \quad \mathcal{L}\left[t^{2} \frac{d^{2} f}{d t^{2}}\right]=\frac{d^{2}}{d s^{2}}\left(s^{2} \bar{f}(s)\right)
$$

(b) The function $y(t)$ satisfies the equation

$$
t^{2} \frac{d^{2} y}{d t^{2}}-2 y=t^{n}, \quad n=0,1,2, \cdots
$$

Show that its Laplace transform, $\bar{y}(s)$ satisfies the equation

$$
s^{2} \frac{d^{2} \bar{y}}{d s^{2}}+4 s \frac{d \bar{y}}{d s}=\frac{n!}{s^{n+1}} .
$$

Hence show that a solution for $y(t)$ is given by

$$
y(t)=A t^{2}+\frac{t^{n}}{(n-2)(n+1)},
$$

with A an arbitrary constant.
(c) Use the Laplace transform to show that the integral equation

$$
y(t)=\exp (-t)+3 \int_{0}^{t} \exp (-2 z) y(t-z) d z
$$

has solution

$$
y(t)=\frac{3}{2} \exp (t)-\frac{1}{2} \exp (-t)
$$

You may assume that $\mathcal{L}\left[\int_{0}^{t} g(z) h(t-z) d z\right]=\mathcal{L}[g] \mathcal{L}[h]$.

