UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

```
B.SC. M.Sci.
```

Mathematics M242: Mathematical Methods 4

COURSE CODE : MATHM242

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 08-MAY-02

TIME : $\mathbf{1 4 . 3 0}$

TIME ALLOWED : 2 hours

02-C0951-3-70
© 2002 University of London

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1. The function $u(r, \theta)$ satisfies the equation

$$
\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)=0
$$

in the regions $r \geq a, 0 \leq \theta \leq \pi$. Show that solutions of the type

$$
u(r, \theta)=r^{\lambda} w(\cos \theta)
$$

are possible if

$$
\begin{equation*}
\left(1-z^{2}\right) \frac{d^{2} w}{d z^{2}}-2 z \frac{d w}{d z}+\lambda(\lambda+1) w=0 \tag{1}
\end{equation*}
$$

You are given that the differential equation (1) has solutions regular at $z= \pm 1$ only if $\lambda(\lambda+1)=n(n+1), n=0,1,2, \ldots$ and that the solution in this case, normalised so that $w(1)=1$, is $w=P_{n}(z)$. Deduce that, if $u(r, \theta)$ is regular and $u(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$,

$$
u(r, \theta)=\sum_{n=0}^{\infty} \frac{A_{n}}{r^{n+1}} P_{n}(\cos \theta)
$$

Verify that, if $n=0,1,2$, equation (1) has solutions $P_{0}(z)=1, P_{1}=z$ and $P_{2}(z)=\left(3 z^{2}-1\right) / 2$. If u satisfies the boundary condition $u(a, \theta)=\cos ^{2} \theta$, then show that

$$
\frac{\partial u}{\partial r}(a, \theta)=\frac{1}{3 a}-\frac{3 \cos ^{2} \theta}{a}
$$

2. Show that the differential equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\left(\frac{1}{4}-x\right) y=0
$$

has a regular singular point at $x=0$.
Show that one solution to the equation is $y_{1}(x)=x^{c} \sum_{k=0}^{\infty} a_{k} x^{k}$, where c takes a value to be determined, and

$$
a_{k}=\frac{1}{\left(k+c+\frac{1}{2}\right)^{2}\left(k+c-\frac{1}{2}\right)^{2}\left(k+c-\frac{3}{2}\right)^{2} \cdots\left(c+\frac{3}{2}\right)^{2}} .
$$

Show that a second, independent, solution of the equation is

$$
y_{2}(x)=y_{1} \ln x-2 x^{-1 / 2} \sum_{k=1}^{\infty} \frac{x^{k}}{(k!)^{2}} S_{k}, \quad S_{k}=\sum_{n=1}^{n=k} \frac{1}{n}
$$

3. (a) The Bessel functions $J_{n}(x)$, with $n=0, \pm 1, \pm 2, \ldots$ satisfy the equation

$$
\exp \left[\frac{1}{2} x(t-1 / t)\right]=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)
$$

Use this to obtain the following results
(i) $2 J_{n}^{\prime}(x)=J_{n-1}(x)-J_{n+1}(x)$,
(ii) $2 n J_{n}(x) / x=J_{n-1}(x)+J_{n+1}(x)$,
(iii) $2 \pi J_{0}(x)=\int_{0}^{2 \pi} \cos (x \sin \theta) d \theta[$ Hint: put $t=\exp (i \theta)]$.
(b) You are given that $y=J_{0}(p x)$ satisfies the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+p^{2} x^{2} y=0 .
$$

Show that

$$
\frac{d}{d x}\left\{x^{2}\left(\frac{d y}{d x}\right)^{2}\right\}+p^{2} x^{2} \frac{d}{d x}\left\{y^{2}\right\}=0
$$

Hence deduce that if $J_{0}(p l)=0$,

$$
2 \int_{0}^{l} x\left[J_{0}(p x)\right]^{2} d x=l^{2}\left[J_{0}^{\prime}(p l)\right]^{2}
$$

4. Consider the integral equation

$$
f(x)=\int_{-\infty}^{\infty} g(x-\xi) u(\xi) d \xi
$$

where f and g are given functions and u is to be found. Show that if $\hat{f}(k)$ and $\hat{g}(k)$ are the Fourier transforms of f and g respectively, then

$$
u(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\hat{f}(k)}{\hat{g}(k)} e^{i k x} d k
$$

Hence find $u(x)$ when

$$
f(x)=e^{-x^{2} / 2}, \quad g(x)=\frac{1}{2} e^{-|x|}
$$

[You may use the results
$\left.\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x, \quad \frac{\widehat{d^{2} f}}{d x^{2}}=-k^{2} \hat{f}, \quad \int_{-\infty}^{\infty} e^{-x^{2} / 2} \cos k x d x=\sqrt{2 \pi} e^{-k^{2} / 2}.\right]$
5. (a) The Laplace transform $\mathcal{L}[f](s)=\bar{f}(s)$ of a function $f(t)$ is defined by

$$
\bar{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Use this definition to show that
(i) $\mathcal{L}[1]=1 / s$,
(ii) $\mathcal{L}\left[e^{-a t}\right]=1 /(s+a)$,
(iii) $\mathcal{L}[d f / d t]=s \bar{f}(s)-f(0)$.
(b) If $u(x, t)$ satisfies the partial differential equation, initial and boundary conditions

$$
u_{t}+x u_{x}=x, \quad u(x, 0)=1+x^{2}, \quad u(0, t)=1
$$

show that

$$
\bar{u}(x, s)=\frac{x^{2}}{s+2}+\frac{x}{s(s+1)}+\frac{1}{s},
$$

where $\bar{u}(x, s)$ is the Laplace transform in t of $u(x, t)$. Hence find $u(x, t)$.
6. Give the definition of the generalised Delta function δ in terms of its action upon the test function ϕ. Explain why the definitions
(i) $(g f, \phi)=(f, g \phi)$,
(ii) $\left(f^{n}, \phi\right)=(-1)^{n}\left(f, \phi^{n}\right)$,
(iii) $\left(S_{b} f, \phi\right)=\left(f, S_{-b} \phi\right)$,
are sensible where g is a fairly good function, f is a generalised function, h^{n} is the nth derivative of h and $S_{b} h(t)=h(t-b)$.
Show that

$$
\exp (a t) \delta^{n}(t-b)=\exp (a b) \sum_{r=0}^{r=n}\binom{n}{r}(-a)^{n-r} \delta^{r}(t-b)
$$

where $\binom{n}{r}$ denotes the binomial coefficient.

