University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M241: Mathematical Methods 3

COURSE CODE : MATHM241

UNIT VALUE : 0.50

DATE : 20-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Find the general solutions of the following partial differential equations
(a)

$$
\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=\sin (x+y)
$$

(b)

$$
\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0
$$

(c)

$$
2 x^{2} z \frac{\partial z}{\partial x}+\cos ^{2} y \frac{\partial z}{\partial y}+x z^{2}=0
$$

In the case of (c) you may leave the solution in implicit form.
2. The functional

$$
I=\int_{x_{1}}^{x_{2}} F\left(y, y^{\prime}\right) d x
$$

with the values of $y\left(x_{1}\right)$ and $y\left(x_{2}\right)$ prescribed, is minimised by $y(x)$. Assuming that Euler's equation is satisfied, deduce that

$$
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=\text { constant }, \quad \text { (Beltrami's Identity) }
$$

A boat in a semi-infinite ocean $(0<y<\infty)$ is constrained to travel at speed λy. If the boat follows a path $y(x)$ between points $(0,1)$ and $(2,1)$, write down a functional expression for the travel time.
Show that the path which minimises the travel time satisfies the relation

$$
\left(y^{\prime 2}+1\right) y^{2}=k^{2}, \quad(k \text { is an unknown constant })
$$

Hence determine the minimising path and the fastest time. How does the fastest time compare to the time taken if the boat sails in a straight line between the two points?
3. Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2}[F(x+c t)+F(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\zeta) d \zeta
$$

of the one-dimensional wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}} \quad(-\infty<x<\infty, \quad t \geq 0)
$$

with c a constant, when the initial conditions are

$$
z(x, 0)=F(x), \quad z_{t}(x, 0)=G(x), \quad(-\infty<x<\infty)
$$

If $G(x)=0$ for $(-\infty<x<\infty)$ and

$$
F(x)=\left\{\begin{array}{cc}
1-\sqrt{|x|}, & |x| \leq 1 \\
0, & |x|>1
\end{array}\right.
$$

display the values of $z(x, t)$ for $t>0$ in an (x, t) plane diagram.
Sketch graphs of the solution for $t=0, t=1 / 2 c$ and $t=2 / c$.
4. Two stretched strings, each of length L, have densities of ρ_{1} and ρ_{2}, and each is under tension T_{0}. When at rest, the strings lie along the x-axis ($-L \leq x \leq L$) and are joined together at $x=0$. The strings are fixed at $x= \pm L$.

Write down the partial differential equations satisfied by the displacement $z(x, t)$ in each string, if the strings perform small transverse oscillations in the plane $y=0$. Define any constants in terms of T_{0}, ρ_{1} and ρ_{2}, and state the boundary conditions satisfied at $x=0$ and $x= \pm L$.

Show that the periods of the normal modes of vibration of the strings are $2 \pi / \omega$ where ω satisfies the equation

$$
c_{1} \tan \left(\frac{\omega L}{c_{1}}\right)+c_{2} \tan \left(\frac{\omega L}{c_{2}}\right)=0
$$

with c_{1} and c_{2} being the wave speeds along the strings with densities ρ_{1} and ρ_{2} respectively.
5. (a) Determine the integral surface that satisfies the partial differential equation

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}-2 z=0
$$

and passes through the curve

$$
y=1, \quad z=3 x^{2}-8 x-3
$$

(b) Using Lagrange multipliers, or otherwise, find the minimum distance from the hyperbola with equation

$$
3 x^{2}-8 x y-3 y^{2}=1
$$

to the origin.
Is there a geometrical connection with the integral surface found in (a)?
6. The steady temperature distribution $\theta(x, y)$ of a square sheet of metal, which has its upper and lower surfaces insulated, satisfies Laplace's equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=0, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1
$$

(a) Derive the general solution for θ in variables separable form.
(b) Find the temperature everywhere in the sheet if the temperature is held constant ($\theta=0$) on three edges ($y=0, y=1$ and $x=0$) and the fourth edge at $x=1$ is heated so that

$$
\theta(1, y)=\sin 2 \pi y \cos \pi y
$$

(c) Using arguments involving symmetry and linearity, or otherwise, write down the steady solution if the edge at $y=0$ is also heated so that

$$
\theta(x, 0)=\sin 2 \pi x \cos \pi x
$$

with the temperatures on the other three edges as in (b).

