EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M241: Mathematical Methods 3

COURSE CODE : MATHM241

UNIT VALUE : 0.50

DATE : 06-MAY-04

TIME : 14.30
time ALlowed : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Examine the function $z=x^{3}-3 x+x y^{2}$ for relative maxima, minima and saddle points.
(b) Find the stationary points of the function $u=\sqrt{x^{2}+y^{2}}$, subject to the constraint $x^{2}+y^{2}+2 x-2 y+1=0$.
2. (a) Find the general solution to the partial differential equation

$$
3 x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=x y^{2}
$$

and verify that the solution satisfies the given equation.
(b) Determine the integral surface $z=f(x, y)$, which satisfies the partial differential equation

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x y \quad(0<y<x)
$$

and contains the curve $z=\tan x, y=0$.
3. A smooth plane curve of length L is drawn through two points placed at $P=(-a, 0)$ and $Q=(a, 0)$ in the (x, y)-plane, so as to maximize the area between the curve and the chord $P Q$.
Show that this curve $y=y(x)$ satisfies the differential equation

$$
1+\left(\frac{d y}{d x}\right)^{2}=\frac{\lambda^{2}}{(\alpha-y)^{2}}
$$

for some constants α and λ.
Integrate this equation to show that the curve is an arc of a circle of radius λ, and find the centre and radius of this circle in the case when $L=\pi a$.
4. Derive the wave equation governing the displacement $z(x, t)$ of a general point of a homogeneous string of density (mass per unit length) ρ, that is stretched under uniform tension T between the end-points A and B.
You may assume that the string performs only small amplitude transverse vibrations in the vertical plane (z, x), with T and ρ remaining constant, and also that gravity, air resistance and any dissipation may be neglected.
5. Two thin rods $A B$ and $C D$, each of length L and constant thermal diffusivity α, are maintained at constant temperatures $0^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ respectively, for $t \leq 0$. The ends B and C are welded together at time $t=0$, so that heat can subsequently flow freely between the rods, and the other ends A and D are now maintained at constant temperatures $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively, for $t>0$. By using separated variables, derive the solution to the diffusion equation, and show that for $t>0$ we have

$$
\theta(L, t)=10-\frac{20}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2 m+1} e^{-\frac{\alpha^{2}(2 m+1)^{2} \pi^{2} t}{4 L^{2}}} \quad\left[{ }^{\circ} \mathrm{C}\right]
$$

where $\theta(L, t)$ denotes the temperature in the centre of the rod at time t.
6. The small transverse vibrations of a circular drum are governed by the two dimensional wave equation in polar coordinates r, θ

$$
\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

where c is the wave speed and t is time. Look for a solution $z(r, \theta, t)=R(r) \Theta(\theta) T(t)$ expressed in separated variables form and derive the ordinary differential equations satisfied by $R(r), \Theta(\theta)$ and $T(t)$.
Give the general solutions for $T(t)$ and $\Theta(\theta)$.

