EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M241: Mathematical Methods 3

COURSE CODE : MATHM241

UNIT VALUE : 0.50

DATE : 20-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. A heavy chain of length ℓ has density ρ per unit length and hangs under gravity from two fixed points distance $2 a$ apart on the same horizontal level. Write down an integral expression for the length ℓ of the chain if coordinates (x, y) are chosen with the x-axis horizontal and the origin at one end of the chain.
Given that the potential energy V of the chain can be written as

$$
V=-\rho g \int_{0}^{2 a} y\left[1+\left(y^{\prime}\right)^{2}\right]^{\frac{1}{2}} d x
$$

where g is the (constant) acceleration due to gravity, and that V is a minimum when the chain hangs in stable equilibrium, deduce that $y(x)$ satisfies the differential equation

$$
\left(\frac{d y}{d x}\right)^{2}=\left[k^{2}(y+h)^{2}-1\right]
$$

where h and k are constants. Hence show that the stable equilibrium shape of the chain is a catenary with equation

$$
y=-h+k^{-1} \cosh [k(x-a)] .
$$

Show that equations which determine the constants h and k are

$$
k \ell=2 \sinh (k a), \quad k h=\cosh (k a)
$$

2. (a) Find the general solution of the partial differential equation

$$
x \frac{\partial z}{\partial x}-7 y \frac{\partial z}{\partial y}=x^{2} y
$$

(b) Determine the integral surface $z=f(x, y)$ which satisfies the partial differential equation

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x y \quad(0<y<x)
$$

and contains the curve $z=\cos x, y=0$.
3. Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2}[F(x+c t)+F(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

of the one-dimensional wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad(-\infty<x<\infty, \quad t \geq 0)
$$

with c a constant, when the initial conditions are

$$
z(x, 0)=F(x), \quad z_{t}(x, 0)=G(x) \quad(-\infty<x<\infty) .
$$

If $F(x)=0$ for $-\infty<x<\infty$ and

$$
G(x)= \begin{cases}\cos \pi x, & \left(|x| \leq \frac{1}{2}\right) \\ 0, & \left(|x|>\frac{1}{2}\right)\end{cases}
$$

display the values of $z(x, t)$ for $t>0$ in an (x, t) plane diagram.
If $t>1 / 2 c$, show that there is a range of values of x over which $z(x, t)$ has a constant value.

If $t<1 / 2 c$, show that there is a range of values of x over which $z(x, t)$ represents a stationary wave.
4. An infinite string lies along the x-axis which is horizontal and is stretched under constant tension T_{0}. For $x<0$ the density of the string is ρ_{1} while for $x>0$ the density is ρ_{2}, where ρ_{1} and ρ_{2} are constants with $\rho_{2}>\rho_{1}$.
Write down the differential equations which are satisfied by the displacements $z_{1}(x, t)$ and $z_{2}(x, t)$ for $x<0$ and $x>0$ respectively, if the string performs small transverse oscillations in the horizontal plane.

What conditions must be satisfied by $z_{1}(x, t)$ and $z_{2}(x, t)$ at $x=0$?
A simple harmonic wave $A e^{i\left(n_{1} t-k_{1} x\right)}$, with A, k_{1} and n_{1} real positive constants, travels along the part of the string for which $x<0$ in the direction of increasing x. Write down the expression for the wave speed c_{1} in terms of k_{1} and n_{1}.
The wave is partly reflected and partly transmitted at $x=0$ on account of the discontinuity in the density of the string. Determine the amplitudes of the reflected and transmitted waves in terms of A and the ratio ρ_{2} / ρ_{1}, and comment on the limiting cases when $\rho_{2} / \rho_{1} \rightarrow 1$ and $\rho_{2} / \rho_{1} \rightarrow \infty$.
5. Write down the steady and unsteady solutions in variables separable form of the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}
$$

where $\theta(x, t)$ denotes temperature and α is the (constant) thermal diffusivity.
A thin uniform rod $A B$ of length L, has its end A maintained at $0^{\circ} \mathrm{C}$ and its end B maintained at $50^{\circ} \mathrm{C}$ for $t<0$ by heat sources. At $t=0$ the heat source is removed from the end A which is then insulated while the temperature of the end B is maintained at $50^{\circ} C$ for $t \geq 0$.
With $x=0$ at the end A of the rod, show that the temperature $\theta(x, t)$ in ${ }^{\circ} C$ at any point of the rod for $t \geq 0$ is given by

$$
\theta(x, t)=50-\frac{400}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos \left[\frac{(2 n+1) \pi x}{2 L}\right] \exp \left[\frac{-(2 n+1)^{2} \alpha^{2} \pi^{2} t}{4 L^{2}}\right]
$$

6. Laplace's equation in plane polar coordinates (r, θ) is

$$
\nabla^{2} \Phi \equiv \frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

Determine all single valued solutions of this equation in variables separable form $R(r) \Theta(\theta)$.
The functions $\Phi_{0}(r, \theta)$ and $\Phi_{1}(r, \theta)$ are solutions of

$$
\begin{aligned}
\nabla^{2} \Phi_{0} & =0, & (r \geq 1) \\
\nabla^{2} \Phi_{1} & =0 . & (0 \leq r \leq 1)
\end{aligned}
$$

and satisfy the boundary conditions
(a) $\Phi_{0}-r \cos \theta \rightarrow 0$ as $r \rightarrow \infty$,
(b) Φ_{1} is bounded at $r=0$,
(c) $\Phi_{1}+2 \Phi_{0}=4, \quad(r=1)$
(d) $\frac{\partial \Phi_{1}}{\partial r}=\frac{\partial \Phi_{0}}{\partial r} . \quad(r=1)$

Determine the functions $\Phi_{0}(r, \theta)$ and $\Phi_{1}(r, \theta)$ and verify that

$$
\int_{0}^{2 \pi} \Phi_{1}(1, \theta) d \theta=8 \pi
$$

