# UNIVERSITY COLLEGE LONDON 

University of London

## EXAMINATION FOR INTERNAL STUDENTS

B.SC. M.SCi.

For the following qualifications :-
B.SC. M.SCi.

Mathematics M241: Mathematical Methods 3

COURSE CODE : MATHM241

UNIT VALUE : 0.50

DATE : 20-MAY-02

TIME : $\mathbf{1 4 . 3 0}$

TIME ALLOWED : 2 hours

02-C0950-3-140

- 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. The functional

$$
I=\int_{x_{1}}^{x_{2}} F\left(y, y^{\prime}\right) d x
$$

with the values of $y\left(x_{1}\right)$ and $y\left(x_{2}\right)$ prescribed, is minimised by $y(x)$. Assuming that Euler's equation is satisfied, deduce that

$$
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=\text { constant } .
$$

The functional

$$
\int_{-a}^{a} y\left[1+\left(y^{\prime}\right)^{2}\right]^{1 / 2} d x
$$

is minimised subject to the constraint

$$
\int_{-a}^{a}\left[1+\left(y^{\prime}\right)^{2}\right]^{1 / 2} d x=2 \ell
$$

where $\ell>a$, together with the boundary conditions $y(-a)=y(a)=0$.
Show that

$$
\frac{y+\lambda}{\left[1+\left(y^{\prime}\right)^{2}\right]^{1 / 2}}=c,
$$

where $c$ and $\lambda$ are constants, and deduce that the minimising function is

$$
y=c[\cosh (x / c)-\cosh (a / c)],
$$

where $\ell=c \sinh (a / c)$.
[ You may assume that $\cosh A-\cosh B=2 \sinh \frac{1}{2}(A+B) \sinh \frac{1}{2}(A-B)$.]
2. (a) Find the general solution of the partial differential equation

$$
\frac{\partial z}{\partial x} \sec x+\frac{\partial z}{\partial y}=\cos y
$$

(b) Find the solution of the partial differential equation

$$
\left(x^{2}+1\right) \frac{\partial z}{\partial x}+2 x y \frac{\partial z}{\partial y}-x z=0
$$

which is such that $z=\left(x^{2}+1\right)^{2}$ when $y=1$ for $\frac{1}{2} \leq x \leq \frac{2}{3}$. Indicate in a diagram the region of the $(x, y)$ plane over which this solution is defined.
3. Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2}[F(x+c t)+F(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

of the one-dimensional wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad(-\infty<x<\infty, \quad t \geq 0)
$$

with $c$ a constant, when the initial conditions are

$$
z(x, 0)=F(x), \quad z_{t}(x, 0)=G(x) \quad(-\infty<x<\infty)
$$

If $G(x)=0$ for $-\infty<x<\infty$ and

$$
F(x)= \begin{cases}\cos ^{2}\left(\frac{1}{2} \pi x\right), & (|x| \leq 1) \\ 0, & (|x|>1)\end{cases}
$$

display the values of $z(x, t)$ for $t>0$ in an $(x, t)$ plane diagram. Deduce that $z(x, 1 / 2 c)=\frac{1}{2}$ for $|x| \leq \frac{1}{2}$.
Sketch the graphs of the solution profiles when $t=0,1 / 2 c$.
4. Laplace's equation in plane polar coordinates $(r, \theta)$ is

$$
\nabla^{2} \Phi \equiv \frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

Find all solutions of this equation of the form $f(r) \cos n \theta,(n=0,1, \ldots)$.
The functions $\Phi_{0}(r, \theta)$ and $\Phi_{1}(r, \theta)$ are solutions of

$$
\nabla^{2} \Phi_{0}=0, \quad(r>1) \quad \nabla^{2} \Phi_{1}=0, \quad(0 \leq r<1)
$$

and satisfy the boundary conditions
(a) $\Phi_{0}-2 r \cos \theta \rightarrow 0$ as $r \rightarrow \infty$,
(b) $r \Phi_{1} \rightarrow 0$ as $r \rightarrow 0$,
(c) $\Phi_{0}+\Phi_{1}=3, \quad(r=1)$
(d) $\frac{\partial \Phi_{0}}{\partial r}=3 \frac{\partial \Phi_{1}}{\partial r}$. $\quad(r=1)$

Determine the functions $\Phi_{0}(r, \theta)$ and $\Phi_{1}(r, \theta)$.
5. Two stretched strings, each of length $L$, have densities $\rho_{1}$ and $\rho_{2}$ and each has tension $T_{0}$. When at rest, the strings lie along the part of the $x$-axis for which $-L \leq x \leq L$ and they are joined together at $x=0$. The strings are fixed at $x= \pm L$.
If the strings perform small transverse vibrations in the horizontal plane $y=0$, write down the differential equation which is satisfied by the displacement $z(x, t)$ in each string, defining any constants in terms of $T_{0}, \rho_{1}$ and $\rho_{2}$, and state the boundary conditions to be satisfied at $x=0$ and $x= \pm L$.

Show that the periods of the normal modes of vibration of the strings are $2 \pi / \omega$, where $\omega$ satisfies the equation

$$
c_{1} \tan \left(\frac{\omega L}{c_{1}}\right)+c_{2} \tan \left(\frac{\omega L}{c_{2}}\right)=0
$$

with $c_{1}$ and $c_{2}$ the wave speeds along the strings with densites $\rho_{1}$ and $\rho_{2}$ respectively.
6. Obtain the steady and unsteady solutions in variables separable form of the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}
$$

where $\theta(x, t)$ denotes temperature and $\alpha$ is the (constant) thermal diffusivity.
The ends of a thin rod of length $2 L$ are maintained at $0^{\circ} \mathrm{C}$ and the centre of the rod is heated to $100^{\circ} \mathrm{C}$ by an external heat source until a steady state temperature distribution is reached in the rod. Show that the steady state temperature $\theta_{0}(x)$ in the rod, as a function of distance $x$ measured from one end of the rod, is given by

$$
\theta_{0}(x)=\left\{\begin{array}{lc}
100 x / L, & (0 \leq x \leq L) \\
100(2 L-x) / L, & (L \leq x \leq 2 L)
\end{array} .\right.
$$

Verify that

$$
\int_{L}^{2 L} \theta_{0}(x) \sin \left(\frac{n \pi x}{2 L}\right) d x=(-1)^{n+1} \int_{0}^{L} \theta_{0}(x) \sin \left(\frac{n \pi x}{2 L}\right) d x . \quad(n=1,2, \ldots)
$$

The heat source is removed from the centre of the rod at time $t=0$ but the ends $x=0,2 L$ are maintained at $0^{\circ} C$ for $t \geq 0$. Find the temperature distribution $\theta(x, t)$ in the rod for $t \geq 0$, and deduce that the temperature at the centre of the rod is

$$
\frac{800}{\pi^{2}} \sum_{m=0}^{\infty} \frac{\exp \left[-\alpha^{2}(2 m+1)^{2} \pi^{2} t / 4 L^{2}\right]}{(2 m+1)^{2}}
$$

[You may assume that

$$
\left.\int_{0}^{L} x \sin \left(\frac{n \pi x}{2 L}\right) d x=\frac{4 L^{2}}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)-\frac{2 L^{2}}{n \pi} \cos \left(\frac{n \pi}{2}\right) . \quad(n=1,2, \ldots)\right]
$$

