1. (a) Define what is meant by a "conservative vector field". If the curl of a field \underline{F} vanishes, then what can one say about the field \underline{F} being conservative or not?
The vector fields $\underline{F}_{1}(x, y, z)$ and $\underline{F}_{2}(x, y, z)$ are defined, in Cartesian coordinates, by:

$$
\begin{aligned}
& \underline{F}_{1}(x, y, z)=\left(2 x y-z^{5}\right) \hat{e}_{x}+x^{2} \hat{\underline{\hat{e}}}_{y}-\left(5 x z^{4}+1\right) \hat{\underline{e}}_{z} \\
& \underline{F}_{2}(x, y, z)=\left(2 x y-z^{5}\right) \underline{\hat{e}}_{x}+x^{2} \underline{\hat{e}}_{y}+\left(5 x z^{4}+1\right) \underline{\hat{e}}_{z}
\end{aligned}
$$

Is either of these vector fields conservative? Show which one of these field is conservative. For this field determine (up to an additive constant) the scalar potential from which such a field arises.
(b) Stokes' theorem states that the line integral of a vector field \underline{G} along a closed loop C is equal to the flux of the curl $\underline{\nabla} \times \underline{G}$ through the surface enclosed by C :

$$
\oint_{C} \underline{G} \cdot \mathrm{~d} \underline{r}=\int_{C}(\underline{\nabla} \times \underline{G}) \cdot \mathrm{d} \underline{S},
$$

where $\mathrm{d} \underline{S}$ points towards the region of space from where an observer would see the loop integral as anti-clockwise.

Consider the vector field $\underline{G}(x, y, z)$ given, in Cartesian coordinates, by:

$$
\underline{G}(x, y, z)=2 y \underline{\hat{e}}_{x}-3 x \underline{\underline{\hat{e}}}_{y}+z^{2} \underline{\hat{e}}_{z} .
$$

Find the curl $\underline{\nabla} \times \underline{G}$. Evaluate the line integral $\oint \underline{G}(x, y, z) \cdot \mathrm{d} \underline{r}$ around the square lying in the $x y$ plane $(z=0)$ and bounded by the lines $x=3, x=5, y=1$ and $y=3$, either directly or by applying Stokes' theorem (take the line integral anti-clockwise as seen from the positive z semi-space).
(c) By virtue of the divergence theorem, the outward flux of a vector field \underline{G} through any closed surface S is equal to the volume integral of its divergence $\underline{\nabla} \cdot \underline{G}$ over the volume V enclosed by the surface:

$$
\int_{S} \underline{G} \cdot \mathrm{~d} \underline{S}=\int_{V} \underline{\nabla} \cdot \underline{G} \mathrm{~d} V
$$

where $\mathrm{d} \underline{S}$ points outward from the closed surface.
Consider the scalar field in Cartesian coordinates:

$$
H(x, y, z)=x^{3}+x y^{2}-z .
$$

Express H in cylindrical polar coordinates ρ, θ and z (where $\rho^{2}=x^{2}+y^{2}$ and $\theta=\arctan (y / x))$. Given the expression for the Laplacian in cylindrical polar coordinates

$$
\nabla^{2} f=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}},
$$

determine $\nabla^{2} H(\rho, \theta, z)$.
Either directly or by applying the divergence theorem, evaluate the outgoing flux of the gradient $\underline{\nabla} H$, given by

$$
\int \underline{\nabla} H \cdot \mathrm{~d} \underline{S},
$$

over the total surface of a cylinder of radius R and height h with its base lying on the $z=0$ plane and centred at the origin.
2. Consider the following second-order linear differential equation

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+(2-x) \frac{d y}{d x}+b y=0, \tag{1}
\end{equation*}
$$

where b is a constant. By writing equation (1) in the form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, or otherwise, determine where this equation is singular.
Solutions of equation (1) can be written in the form:

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0 . \tag{4}
\end{equation*}
$$

Show that $k=0$ or $k=-1$.
Derive the recurrence relation

$$
\begin{equation*}
a_{n+1}=\frac{n+k-b}{(n+k+1)(n+k+2)} a_{n} . \tag{5}
\end{equation*}
$$

Demonstrate that the series solutions converge for all values of x.
In the special case of $b=m$, a positive integer, show that the series with $k=0$ terminates at $n=m$ to yield a polynomial solution.
Obtain this solution for the case of $b=m=2$ and demonstrate that it satisfies the differential equation (1).
3. If a matrix \underline{H} is described as Hermitian, what property does it have? Prove that the eigenvalues of a Hermitian matrix are real. What property must the associated eigenvectors have?
The matrix \underline{A} is given by

$$
\underline{A}=\left(\begin{array}{rrr}
5 & -5 & 1 \\
-5 & 11 & -5 \\
1 & -5 & 5
\end{array}\right) .
$$

Is \underline{A} Hermitian? What is its trace?
Verify that $\lambda_{1}=16$ is an eigenvalue of \underline{A} and that its associated eigenvector can be written as $\underline{v}_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$.
Show that $\lambda_{2}=4$ is also an eigenvalue and obtain the third eigenvalue, λ_{3}. Find the normalised eigenvectors corresponding to eigenvalues λ_{2} and λ_{3}.
4. A particle of mass $m=1$ is moving on a plane. Its position is represented, in Cartesian coordinates, by the two-dimensional vector $\underline{r}=x \underline{\underline{\hat{e}}}_{x}+y \underline{\underline{\hat{e}}}_{y}$.
The particle is subject to a conservative force field $\underline{F}(\underline{r})$, with potential energy $U(\underline{r})$ given by

$$
U(\underline{r})=\frac{2-\sqrt{2}}{2} x^{2}+\frac{1-\sqrt{2}}{2} y^{2}+\frac{1}{\sqrt{2}}(x-y)^{2} .
$$

Write down the general relation between the force $\underline{F}(\underline{r})$ and the potential energy $U(\underline{r})$ and use it to determine the force $\underline{F}(\underline{r})$ acting on the particle.
Find the work done against the force $\underline{F}(\underline{r})$ when the particle moves from the point $(0,0)$ to the point $(1,1)$ along the line $x=y$.
Write down the particle's equation of motion and show that it can be written as

$$
\underline{\ddot{r}}=\underline{A} \underline{r},
$$

where \underline{A} is the 2×2 real matrix

$$
\underline{A}=\left(\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right) .
$$

Find the eigenvalues and eigenvectors of \underline{A}.
Use these eigenvalues and eigenvectors to obtain two uncoupled differential equations describing the motion. Solve these equations for the initial conditions $x=$ $y=\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sqrt{2}$ at $t=0$. Give explicit solutions for the variables x and y.
5. In atomic units the Schrödinger equation for the hydrogen atom can be written as

$$
\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r}\right) \psi=E \psi
$$

where, in spherical polar coordinates:

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} .
$$

By writing

$$
\psi=R(r) \Theta(\theta) \Phi(\phi)
$$

show that $\Phi(\phi)$ must satisfy the equation

$$
\frac{d^{2} \Phi}{d \phi^{2}}=-m^{2} \Phi
$$

What are the solutions of this equation? Explain why m, the constant of separation, must take integer values.
Hence show that $R(r)$ must satisfy the radial equation

$$
\frac{1}{2} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+R r+E R r^{2}=\lambda R
$$

where λ is another constant of separation. Obtain the corresponding equation for $\Theta(\theta)$.
For the special case of $\lambda=0$, show that the radial equation can be written as

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2} U}{d r^{2}}+\left[\frac{1}{r}+E\right] U=0 \tag{3}
\end{equation*}
$$

where $U(r)=r R(r)$. Show that for large values of r

$$
U(r)=A \exp (\alpha r)+B \exp (-\alpha r)
$$

where $\alpha=(-2 E)^{\frac{1}{2}}$. How can this solution be simplified for bound states of the hydrogen atom?
6. (a) Any continuous function $f(x)$ in $-1 \leq x \leq 1$ can be expanded in terms of Legendre polynomials as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x) \quad \text { for } \quad-1 \leq x \leq+1 .
$$

Given the orthogonality relation

$$
\int_{-1}^{+1} P_{m}(x) P_{n}(x) \mathrm{d} x=\delta_{m n} \frac{2}{2 n+1},
$$

derive a formula for the coefficients a_{n}.
Given the first two Legendre polynomials

$$
P_{0}(x)=1, \quad P_{1}(x)=x,
$$

find the first two coefficients a_{0} and a_{1} of the expansion of the function $\alpha \mathrm{e}^{\alpha|x|}$, where α is real.
(b) The electrostatic potential of a charge Q located on the z axis at the point $(0,0, d)$ (in Cartesian coordinates; note that d can be either positive or negative), reads, in spherical polar coordinates:

$$
V(r, \theta, \phi)=\frac{Q}{4 \pi \varepsilon_{0} r} \sum_{l=0}^{\infty}\left(\frac{d}{r}\right)^{l} P_{l}(\cos \theta) .
$$

Add now a second charge $-Q$ on the z axis at point $(0,0,-d)$. Write down an expression for the total potential V_{T} created by the charges Q and $-Q$ in spherical polar coordinates.
Consider a charge q very far from the origin $(d \ll r)$. By approximating the total potential V_{T} due to charges Q and $-Q$ to the first non-zero term of the expansion in Legendre polynomials, and using the expression of the gradient in spherical polars (given below), find the electrostatic force acting on the charge q in this case.

The gradient operator in spherical polar coordinates is

$$
\underline{\nabla}=\underline{\hat{e}}_{r} \frac{\partial}{\partial r}+\underline{\hat{e}}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\underline{\hat{e}}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} .
$$

7. (a) Let $f(x)$ be a function of period π defined by

$$
f(x)=\sin (x) \quad \text { for } \quad-\frac{\pi}{2}<x<+\frac{\pi}{2} .
$$

Is $f(x)$ an even or odd function?
Show that the Fourier expansion of $f(x)$ can be written as

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (2 n x)
$$

where the coefficients b_{n} are given by

$$
\begin{equation*}
b_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin (2 n x) \sin (x) \mathrm{d} x . \tag{4}
\end{equation*}
$$

Determine the coefficients b_{n} and hence show that

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{8 n}{1-4 n^{2}} \sin (2 n x) . \tag{5}
\end{equation*}
$$

Parseval's identity for a function $f(x)$ with general period $2 L$ reads

$$
\frac{1}{2 L} \int_{-L}^{+L}[f(x)]^{2} \mathrm{~d} x=\left(a_{0} / 2\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) .
$$

Apply Parseval's identity to prove

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}}{64}
$$

(b) The function $g(x)$ is defined by

$$
\begin{aligned}
& g(x)=\sin (x) \text { for }-l<x<+l \\
& g(x)=0 \text { for }|x| \geq l
\end{aligned}
$$

where l is real and positive. The Fourier transform $\tilde{g}(k)$ of $g(x)$ is defined as

$$
\tilde{g}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{e}^{-i k x} g(x) \mathrm{d} x
$$

Give the general way to obtain the original function $g(x)$ from its Fourier transform $\tilde{g}(k)$ (i.e., to obtain the inverse Fourier transform of $\tilde{g}(k))$.
Prove that, in the limit $l \rightarrow+\infty$, one has

$$
\lim _{l \rightarrow \infty} \tilde{g}(k)=i \sqrt{\frac{\pi}{2}}[\delta(k+1)-\delta(k-1)]
$$

where δ stands for the Dirac delta function.

PHAS2246: Mathematical Methods III

Model solutions. A more detailed PROVISIONAL marking scheme is given here in square brackets in the right-hand margin.

1. (a) A vector field $\underline{F}(\underline{r})$ is conservative if and only if there exists a scalar potential $U(\underline{r})$ such that $\underline{F}(\underline{r})=-\underline{\nabla} U(\underline{r})$ (book work).
If $\underline{\nabla} \times \underline{F}=0$ then the field \underline{F} is conservative (book work). The opposite implication (\underline{F} conservative then $\underline{\nabla} \times \underline{F}=0$) is also true.

$$
\begin{aligned}
& \underline{\nabla} \times \underline{F}_{1}=\left(\partial_{y} F_{1 z}-\partial_{z} F_{1 y}\right) \hat{\underline{e}}_{x}+\left(\partial_{z} F_{1 x}-\partial_{x} F_{1 z}\right) \hat{\underline{e}}_{y}+\left(\partial_{x} F_{1 y}-\partial_{y} F_{1 x}\right) \hat{e}_{z}=0, \\
& \underline{\nabla} \times \underline{F}_{2}=-10 z^{4} \underline{\hat{e}}_{y} .
\end{aligned}
$$

Hence, \underline{F}_{1} is conservative but \underline{F}_{2} is not.
The scalar potential $U(x, y, z)$ such that $\underline{F}_{1}=-\underline{\nabla} U$ can be found by integrating the components of \underline{F}_{1} with respect to the corresponding variables and by comparing the results obtained:
$\frac{\partial U}{\partial x}=-\left(2 x y-z^{5}\right) \Rightarrow U=-\int\left(2 x y-z^{5}\right) \mathrm{d} x+f_{x}(y, z)=-x^{2} y+x z^{5}+f_{x}(y, z)$,
$\frac{\partial U}{\partial y}=-x^{2} \Rightarrow U=-\int x^{2} \mathrm{~d} y+f_{y}(x, z)=-x^{2} y+f_{y}(x, z)$,
$\frac{\partial U}{\partial z}=\left(5 x z^{4}+1\right) \Rightarrow U=\int\left(5 x z^{4}+1\right) \mathrm{d} z+f_{z}(x, y)=x z^{5}+z+f_{z}(x, y)$,
where the three functions f_{x}, f_{y} and f_{z} have to be determined by consistency. The only consistent option is $f_{x}(y, z)=z, f_{y}(x, z)=x z^{5}+z$ and $f_{z}(x, y)=-x^{2} y$, yielding

$$
\begin{equation*}
U(x, y, z)=-x^{2} y+x z^{5}+z . \tag{4}
\end{equation*}
$$

As can be directly verified, the negative gradient of this potential U is equal to the field \underline{F}_{1}.
(b) Evaluate the curl:

$$
\begin{aligned}
\underline{\nabla} \times \underline{G} & =\left(\partial_{y} G_{z}-\partial_{z} G_{y}\right) \hat{\underline{e}}_{x}+\left(\partial_{z} G_{x}-\partial_{x} G_{z}\right) \hat{\underline{e}}_{y}+\left(\partial_{x} G_{y}-\partial_{y} G_{x}\right) \hat{\underline{e}}_{z} \\
& =-5 \underline{\hat{e}}_{z} .
\end{aligned}
$$

Because of Stokes' theorem, since the area of the square is 4 and the curl $\underline{\nabla} \times \underline{G}$ points towards the negative direction, one has

$$
\oint \underline{G}(x, y, z) \cdot \mathrm{d} \underline{r}=-5 \times 4=-20 .
$$

(c) In polar coordinates:

$$
x=\rho \cos \theta, \quad x^{2}+y^{2}=\rho^{2} \quad \Rightarrow \quad H=x\left(x^{2}+y^{2}\right)-z=\rho^{3} \cos \theta-z
$$

$$
\Rightarrow \quad \nabla^{2} H(\rho, \theta, z)=9 \rho \cos \theta-\rho \cos \theta=8 \rho \cos \theta
$$

Now, because the Laplacian $\nabla^{2} H$ is just the divergence of the gradient $\underline{\nabla} H$, we can apply the divergence theorem and evaluate the surface integral by integrating $\nabla^{2} H(\rho, \theta, z)$ over the volume of the cylinder:

$$
\int \underline{\nabla} H \cdot \mathrm{~d} \underline{S}=\int_{0}^{h} \mathrm{~d} z \int_{0}^{R} \mathrm{~d} \rho \int_{0}^{2 \pi} \rho \mathrm{~d} \theta 8 \rho \cos \theta=h \frac{8 R^{3}}{3} \int_{0}^{2 \pi} \cos \theta \mathrm{~d} \theta=0
$$

2. Look for a solution of the second-order differential equation

$$
x \frac{d^{2} y}{d x^{2}}+(2-x) \frac{d y}{d x}+b y=0
$$

Gives $p(x)=\frac{2-x}{x}$ and $q(x)=\frac{b}{x}$.
This means the equation is singular at $x=0$ only.
At $x=0, p_{0}=2$ and $q_{0}=0$, hence the indicial equation is written as

$$
\begin{gathered}
k(k-1)+2 k=0 \\
k^{2}+k=0
\end{gathered}
$$

So $k=0$ or -1 .

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n+k} \\
y^{\prime} & =\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty} a_{n}(n+k)(n+k-1) x^{n+k-2} .
\end{aligned}
$$

Inserting these into the equation, we obtain

$$
\sum_{n=0}^{\infty} a_{n}\left[(n+k)(n+k-1) x^{n+k-1}+2(n+k) x^{n+k-1}-(n+k) x^{n+k}+b x^{n+k}\right]=0
$$

which can be grouped as

$$
\sum_{n=0}^{\infty} a_{n}(n+k)(n+k+1) x^{n+k-1}=\sum_{n=0}^{\infty} a_{n}(n+k-b) x^{n+k}
$$

Rearranging the left hand side so that we get the same powers of x everywhere, we find

$$
\begin{equation*}
\sum_{n=-1}^{\infty} a_{n+1}(n+k+1)(n+k+2) x^{n+k}=\sum_{n=0}^{\infty} a_{n}(n+k-b) x^{n+k} \tag{4}
\end{equation*}
$$

The recurrence relation can be read off directly and gives

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+k-b}{(n+k+1)(n+k+2)}
$$

To check for convergence, we use the d'Alembert ratio test, which requires that

$$
R=\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|<1
$$

in the $n \rightarrow \infty$ limit. From the recurrence relation, we see that

$$
R \rightarrow \frac{|x|}{n} \text { as } n \rightarrow \infty
$$

Clearly, in the limit of large n, we always have $R<1$ so that the series converges for all values of x.
Or state that there are no poles in the complex plane apart from $x=0$ so the solutions converges for all values of x.

For $k=0$ and $b=m$, a positive integer, the recurrence relation becomes

$$
\frac{a_{n+1}}{a_{n}}=\frac{n-m}{(n+1)(n+2)} .
$$

The right hand side vanishes when $n=m$ so that $a_{m+1}=0$. By repeated use of the recurrence relation, all the subsequent terms are then also zero. (This last bit is crucial.)
For $b=m=2$

$$
\begin{gathered}
a_{1}=\frac{-2}{1 \times 2} a_{0}=-a_{0} \\
a_{2}=\frac{1-2}{2 \times 3} a_{1}=\frac{a_{0}}{6} \\
a_{3}=0 \\
y=\left(\frac{x^{2}}{6}-x+1\right) a_{0} \\
y^{\prime}=\left(\frac{x}{3}-1\right) a_{0} \\
y^{\prime \prime}=\frac{1}{3} a_{0}
\end{gathered}
$$

3. A Hermitian matrix is one for which $\underline{A}^{\dagger}=\left(\underline{A}^{T}\right)^{*}=\left(\underline{A}^{*}\right)^{T}=\underline{A}$

Consider the eigenvalue equation

$$
\underline{H} \underline{X}=\lambda \underline{X},
$$

Take its Hermitian conjugate:

$$
\begin{align*}
(\underline{H} \underline{X})^{\dagger} & =(\lambda \underline{X})^{\dagger} \\
\underline{X}^{\dagger} \underline{H}^{\dagger}=\underline{X}^{\dagger} \underline{H} & =\lambda^{*} \underline{X}^{\dagger} \tag{1}
\end{align*}
$$

Multiply eq. (1) from the right by \underline{X}

$$
\begin{equation*}
\underline{X}^{\dagger} \underline{H} \underline{X}=\lambda^{*} \underline{X}^{\dagger} \underline{X} \tag{2}
\end{equation*}
$$

Go back to first Eq. and multiply it on the left by \underline{X}^{\dagger}

$$
\begin{equation*}
\underline{X}^{\dagger} \underline{H} \underline{X}=\lambda \underline{X^{\dagger}} \underline{X} . \tag{3}
\end{equation*}
$$

The left hand sides of Eqs. (2) and (3) are identical and so the right hand sides have to be as well;

$$
\begin{equation*}
\left(\lambda^{*}-\lambda\right) \underline{X}^{\dagger} \underline{X}=0 . \tag{4}
\end{equation*}
$$

But since all $\underline{X}^{\dagger} \underline{X}=X^{2}$ are non-zero

$$
\begin{equation*}
\lambda_{i}^{*}-\lambda_{i}=0, \tag{5}
\end{equation*}
$$

which means that all the eigenvalues are real (adaptation of bookwork).
Eigenvectors for non-degenerate eigenvalues are orthogonal.
\underline{A} is real and symmetric and hence Hermitian.
The trace of \underline{A} is $5+11+5=21$.
The characteristic equation is given by

$$
|\underline{A}-\lambda \underline{I}|=\left|\begin{array}{rrr}
5-\lambda & -5 & 1 \\
-5 & 11-\lambda & -5 \\
1 & -5 & 5-\lambda
\end{array}\right| .
$$

To verify that $\lambda_{1}=16$, evaluate

$$
\left|\begin{array}{rrr}
-11 & -5 & 1 \\
-5 & -5 & -5 \\
1 & -5 & -11
\end{array}\right|
$$

This equals zero since adding row 1 and row 3 gives twice row 2 .

To verify that \underline{v}_{1} is the associated eigenvector,
$\left(\underline{A}-\lambda_{1} \underline{I}\right) \underline{v}_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{rrr}-11 & -5 & 1 \\ -5 & -5 & -5 \\ 1 & -5 & -11\end{array}\right)\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{c}-11+10+1 \\ -5+10-5 \\ 1+10-11\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$,
as required. It is a normalised eigenvector by inspection.
To verify that $\lambda_{2}=4$, evaluate

$$
\left|\begin{array}{rrr}
1 & -5 & 1 \tag{1}\\
-5 & 7 & -5 \\
1 & -5 & 1
\end{array}\right|
$$

This equals zero since the first and third rows are the same.
The sum of the eigenvalues equals the trace of the matrix, so

$$
\lambda_{3}=21-16-4=1
$$

Other methods of demonstrating eigenvalues and eigenvector acceptable.

For the second eigenvalue,

$$
\left(\underline{A}-\lambda_{2} \underline{I}\right) \underline{v}_{2}=\left(\begin{array}{rrr}
1 & -5 & 1 \\
-5 & 7 & -5 \\
1 & -5 & 1
\end{array}\right)\left(\begin{array}{l}
v_{12} \\
v_{22} \\
v_{32}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

so that $v_{12}=-v_{32}$, hence $v_{22}=0$. The normalised eigenvector is therefore (to [2] within a phase).

$$
\underline{v}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \tag{1}\\
0 \\
-1
\end{array}\right) .
$$

Similarly for the third eigenvalue,

$$
\left(\underline{A}-\lambda_{3} \underline{I}\right) \underline{v}_{3}=\left(\begin{array}{rrr}
4 & -5 & 1 \\
-5 & 10 & -5 \\
1 & -5 & 4
\end{array}\right)\left(\begin{array}{l}
v_{12} \\
v_{22} \\
v_{32}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

so that $v_{12}=v_{32}$ and hence $v_{22}=v_{12}=v_{32}$. The normalised eigenvector is therefore (to within a phase).

$$
\underline{v}_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

4. Relation between force \underline{F} and potential U (book work):

$$
\begin{gathered}
\underline{F}(\underline{r})=-\underline{\nabla} U(\underline{r}) \\
\Rightarrow \quad \underline{F}(\underline{r})=-(2 x-\sqrt{2} y) \underline{\hat{e}}_{x}-(y-\sqrt{2} x) \underline{\hat{e}}_{y} .
\end{gathered}
$$

The force field is conservative (admits a potential U). The work W done against the force is just given by the difference in the potential at the initial and final point:

$$
W=U(1,1)-U(0,0)=\frac{3}{2}-\sqrt{2}-0=\frac{3}{2}-\sqrt{2} .
$$

Newton's equation of motion:

$$
\underline{F}(\underline{r})=m \underline{\ddot{r}}=\underline{\ddot{r}} \quad \Rightarrow \quad \ddot{\underline{r}}=-(2 x-\sqrt{2} y) \underline{\hat{e}}_{x}-(y-\sqrt{2} x) \underline{\hat{e}}_{y},
$$

which can be written in terms of components and matrices as:

$$
\ddot{\underline{r}}=\binom{\ddot{x}}{\ddot{y}}=\binom{-2 x+\sqrt{2} y}{-y+\sqrt{2} x}=\left(\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right)\binom{x}{y}=\underline{A} \underline{r} .
$$

Characteristic equation of \underline{A} :

$$
\begin{equation*}
\lambda^{2}+3 \lambda=0 \tag{1}
\end{equation*}
$$

\Rightarrow eigenvalues are 0 and -3 .
Eigenvector related to 0:

$$
\left(\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right)\binom{a}{1}=\binom{0}{0} \quad \Rightarrow \quad a=\frac{1}{\sqrt{2}} .
$$

Up to normalisation, the eigenvector $\underline{r_{0}}$ corresponding to the eigenvalue 0 is

$$
\underline{r_{0}}=\binom{\frac{1}{\sqrt{2}}}{1} .
$$

Eigenvector related to -3 :

$$
\left(\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right)\binom{a}{1}=\binom{-3 a}{-3} \quad \Rightarrow \quad a=-\sqrt{2} .
$$

Up to normalisation, the eigenvector $\underline{r_{-3}}$ corresponding to the eigenvalue -3 is

$$
\underline{r_{-3}}=\binom{-\sqrt{2}}{1} .
$$

In the new variables $\tilde{x}=x / \sqrt{2}+y$ and $\tilde{y}=-\sqrt{2} x+y$, dictated by the eigenvectors above, the second-order differential equations of motion decouple as

$$
\begin{align*}
\ddot{\tilde{x}} & =0, \\
\ddot{\tilde{y}} & =-3 \tilde{y}, \tag{6}
\end{align*}
$$

with general solutions

$$
\begin{align*}
& \tilde{x}=A t+B \\
& \tilde{y}=C \sin (\sqrt{3} t)+D \cos (\sqrt{3} t) . \tag{7}
\end{align*}
$$

The requested initial conditions read, in terms of the new variables:

$$
\tilde{x}(0)=\tilde{y}(0)=0, \quad \dot{\tilde{x}}=1, \quad \dot{\tilde{y}}=-2,
$$

which imply

$$
B=0, \quad D=0, \quad A=1, \quad C=-\frac{2}{\sqrt{3}}, .
$$

The requested solutions are thus

$$
\begin{aligned}
\tilde{x} & =t \\
\tilde{y} & =-\frac{2}{\sqrt{3}} \sin (\sqrt{3} t)
\end{aligned}
$$

which can be expressed in terms of the original variables x and y by noting that:

$$
\begin{aligned}
& x=\frac{\sqrt{2}}{3}(\tilde{x}-\tilde{y}), \\
& y=\frac{\sqrt{2}}{3}\left(\sqrt{2} \tilde{x}+\frac{1}{\sqrt{2}} \tilde{y}\right) .
\end{aligned}
$$

Finally:

$$
\begin{aligned}
& x=\frac{\sqrt{2}}{3}\left(t+\frac{2}{\sqrt{3}} \sin (\sqrt{3} t)\right) \\
& y=\frac{2}{3}\left(t-\frac{1}{\sqrt{3}} \sin (\sqrt{3} t)\right)
\end{aligned}
$$

5. (This question is similar to material covered in the lectures where they did separation of variables for Laplace's equation)

$$
\psi(r, \theta, \phi)=R(r) \times \Theta(\theta) \times \Phi(\phi)
$$

$\Theta \Phi \frac{1}{2 r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+R \Phi \frac{1}{2 r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+R \Theta \frac{1}{2 r^{2} \sin ^{2} \theta}\left(\frac{d^{2} \Phi}{d \phi^{2}}\right)+\left(\frac{1}{r}+E\right) R \Theta \Phi=0$.
Divide by $R \Theta \Phi$ and multiply by $2 r^{2} \sin ^{2} \theta$

$$
\frac{\sin ^{2} \theta}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{1}{\Theta} \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+2 r \sin ^{2} \theta(1+E r)+\frac{1}{\Phi}\left(\frac{d^{2} \Phi}{d \phi^{2}}\right)=0
$$

First 3 terms here depend upon r and θ but last is a function purely of ϕ. Since r, θ and ϕ are independent variables, the third term must be some constant, denoted by $-m^{2}$.

$$
\begin{equation*}
\frac{d^{2} \Phi}{d \phi^{2}}=-m^{2} \Phi \tag{1}
\end{equation*}
$$

which has solutions $e^{ \pm i m \phi}$ or, alternatively, $\cos m \phi$ and $\sin m \phi$. When ϕ increases by 2π, the solution returns to the same point; expect same physical solution. Thus $\Phi(\phi+2 \pi)=\Phi(\phi)$. Can only be accomplished if m is a real integer. Then $\Phi(\phi)$ is clearly a periodic function.
The remainder of the equation can be manipulated (divide by $2 \sin ^{2} \theta$ and rearrange) into

$$
\begin{equation*}
\frac{1}{2 R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+r(1+E r)=\frac{1}{2}\left[\frac{m^{2}}{\sin ^{2} \theta}-\frac{1}{\Theta} \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right] \tag{2}
\end{equation*}
$$

Left hand side is function only of r, while right hand side depends only on θ. Means that both sides must be equal to some constant, denote by λ. Results in two ordinary DEs:

$$
\begin{align*}
\frac{1}{2} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+r(1+E r) R & =\lambda R \\
\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left(2 \lambda \sin \theta-\frac{m^{2}}{\sin \theta}\right) \Theta & =0 \tag{2}
\end{align*}
$$

Let $U=r R$ and $\lambda=0$.

$$
\begin{gather*}
R^{\prime}=-r^{-2} U+r^{-1} U^{\prime} \\
r^{2} R^{\prime}=-U+r U^{\prime} \tag{1}\\
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-U^{\prime}+U^{\prime}+r U^{\prime \prime}
\end{gather*}
$$

$$
r U^{\prime \prime}+2 U+2 E r U=0
$$

gives

$$
\frac{1}{2} \frac{d^{2} U}{d r^{2}}+\left[\frac{1}{r}+E\right] U=0
$$

For large $\mathrm{r}, \frac{1}{r}$ tends to zero so

$$
U^{\prime \prime}=-2 E U
$$

which has solution for $\alpha=(-2 E)^{\frac{1}{2}}$

$$
U(r)=A \exp (\alpha r)+B \exp (-\alpha r)
$$

For bound states this solution must be normalisable, however $\exp (\alpha r)$ is infinite at $r=\infty$ so cannot be normalised, therefore $A=0$.
6. (a) Multiplying the expansion of $f(x)$ in terms of Fourier polynomials by $P_{m}(x)$ and integrating over x yields

$$
\begin{equation*}
\int_{-1}^{+1} P_{m}(x) f(x) \mathrm{d} x=\sum_{n=0}^{\infty} a_{n} \int_{-1}^{+1} P_{m}(x) P_{n}(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

Substituting the orthogonality relation into the RHS of the previous equation gives:

$$
\int_{-1}^{+1} P_{m}(x) f(x) \mathrm{d} x=\sum_{n=0}^{\infty} a_{n} \delta_{m n} \frac{2}{2 n+1}=a_{m} \frac{2}{2 m+1} .
$$

Now, rearranging terms and renaming the label gives the general formula for the coefficients a_{n} (book work)

$$
a_{n}=\frac{2 n+1}{2} \int_{-1}^{+1} P_{n}(x) f(x) \mathrm{d} x
$$

Notice that $\alpha \mathrm{e}^{\alpha|x|}$ is even. Applying the formula above, splitting the integration domain and noting that $P_{n}(x)$ is even or odd for even or odd n, one has:

$$
\begin{equation*}
a_{0}=\frac{1}{2} \int_{-1}^{+1} \alpha \mathrm{e}^{\alpha|x|} \mathrm{d} x=\int_{0}^{+1} \alpha \mathrm{e}^{\alpha x} \mathrm{~d} x=\left[\mathrm{e}^{\alpha x}\right]_{0}^{1}=\mathrm{e}^{\alpha}-1 \tag{2}
\end{equation*}
$$

$a_{1}=0$ because $P_{1}(x) \alpha \mathrm{e}^{\alpha|x|}$ is odd.
(b) If the second charge is added, the total potential is:

$$
\begin{aligned}
V_{T}(r, \theta, \phi) & =\frac{Q}{4 \pi \varepsilon_{0} r}\left[\sum_{l=0}^{\infty}\left(\frac{d}{r}\right)^{l} P_{l}(\cos \theta)-\sum_{l=0}^{\infty}\left(\frac{-d}{r}\right)^{l} P_{l}(\cos \theta)\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0} r} \sum_{l=0}^{\infty}\left(\frac{d}{r}\right)^{l} P_{l}(\cos \theta)+\sum_{l=0}^{\infty}(-1)^{l+1}\left(\frac{d}{r}\right)^{l} P_{l}(\cos \theta) \\
& =\frac{2 Q}{4 \pi \varepsilon_{0} r} \sum_{l \text { odd }}^{\infty}\left(\frac{d}{r}\right)^{l} P_{l}(\cos \theta)
\end{aligned}
$$

(the even terms in the two expansions cancel each other out). Hence, $l=1$ is the first non-vanishing term ("dipole" term) and, for $d \ll r$, the potential can be approximated as

$$
V_{T}(r, \theta, \phi) \simeq \frac{Q}{2 \pi \varepsilon_{0} r} \frac{d}{r} P_{1}(\cos \theta)=\frac{Q d}{2 \pi \varepsilon_{0} r^{2}} \cos \theta
$$

The resulting electrostatic force is thus given by

$$
\underline{F}=-q \underline{\nabla} V_{T}=\frac{Q q d}{2 \pi \varepsilon_{0}}\left(-\partial_{r} \frac{\cos \theta}{r^{2}} \underline{\hat{e}}_{r}-\frac{1}{r} \partial_{\theta} \frac{\cos \theta}{r^{2}} \underline{\hat{e}}_{\theta}\right)=\frac{Q q d}{2 \pi \varepsilon_{0} r^{3}}\left(2 \cos \theta \underline{\hat{e}}_{r}+\sin \theta \underline{\hat{e}}_{\theta}\right) .
$$

This represents the interaction of an electric dipole with a charge. Notice that this force is one order weaker (proportional to $1 / r^{3}$) than that of a single charge (as the net charge of the present configuration vanishes and thus there is no "monopole" contribution).
7. (a) The function $f(x)$ is odd because $\sin x$ is odd.

Fourier series of a function with generic period $2 L$ (book work):

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{\pi}{L} x\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \frac{\pi}{L} x\right) \tag{1}
\end{equation*}
$$

where the coefficients of the expansion are given by (book work):

$$
\begin{align*}
& a_{n}=\frac{1}{L} \int_{-L}^{+L} \cos \left(n \frac{\pi}{L} x\right) f(x) \mathrm{d} x \\
& a_{n}=\frac{1}{L} \int_{-L}^{+L} \cos \left(n \frac{\pi}{L} x\right) f(x) \mathrm{d} x \tag{1}
\end{align*}
$$

All the a_{n} 's vanish because $f(x)$ is odd. Hence, replacing L with $\pi / 2$ yields

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (2 n x)
$$

with

$$
b_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{+\pi / 2} \sin (2 n x) f(x) \mathrm{d} x=\frac{2}{\pi} \int_{-\pi / 2}^{+\pi / 2} \sin (2 n x) \sin (x) \mathrm{d} x .
$$

To solve the previous integral, apply the goniometric identity:

$$
\sin (\alpha) \sin (\beta)=\frac{\cos (\alpha-\beta)-\cos (\alpha+\beta)}{2}
$$

so that

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi / 2}^{+\pi / 2} \cos ((2 n-1) x)-\cos ((2 n+1) x) \mathrm{d} x \\
& =\frac{1}{\pi}\left(\left[\frac{\sin ((2 n-1) x)}{2 n-1}\right]_{-\pi / 2}^{+\pi / 2}-\left[\frac{\sin ((2 n+1) x)}{2 n+1}\right]_{-\pi / 2}^{+\pi / 2}\right) .
\end{aligned}
$$

Note now that $\sin ((2 n+1) \pi / 2)=(-1)^{n}$ (and, thus, $\left.\sin ((2 n-1) \pi / 2)=(-1)^{n+1}\right)$:

$$
\begin{equation*}
b_{n}=\frac{(-1)^{n}}{\pi}\left(-\frac{2}{2 n-1}-\frac{2}{2 n+1}\right)=\frac{(-1)^{n}}{\pi} \frac{8 n}{1-4 n^{2}} . \tag{2}
\end{equation*}
$$

Substituting into the Fourier series:

$$
f(x)=\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{8 n}{1-4 n^{2}} \sin (2 n x) .
$$

Applying Parseval's identity to our case:

$$
\frac{1}{\pi} \int_{-\pi / 2}^{+\pi / 2} \sin ^{2}(x) \mathrm{d} x=\frac{1}{2 \pi} \int_{-\pi / 2}^{+\pi / 2} 1-\cos (2 x) \mathrm{d} x=\frac{1}{2}-0=\frac{1}{2}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{2}=\frac{1}{2} \frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{64 n^{2}}{\left(1-4 n^{2}\right)^{2}} \Rightarrow \sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}}{64} \tag{1}
\end{equation*}
$$

(b) In general one has (book work):

$$
g(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \tilde{g}(k) \mathrm{e}^{i k x} \mathrm{~d} k
$$

Substituting $\tilde{g}(k)=i \sqrt{\frac{\pi}{2}}[\delta(k+1)-\delta(k-1)]$ into the RHS of the previous equation, and using the properties of the delta function, yields

$$
\frac{i}{2} \int_{-\infty}^{+\infty}[\delta(k+1)-\delta(k-1)] \mathrm{e}^{i k x} \mathrm{~d} k=\frac{1}{2 i}\left[\mathrm{e}^{i x}-\mathrm{e}^{-i x}\right]=\sin x=\lim _{l \rightarrow \infty} g(x)
$$

which proves the requested identity. Note that the limit $l \rightarrow \infty$ is essential, as $g(x)=\sin x$ holds everywhere only in this limit.

