EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : PHAS2246
ASSESSMENT : PHAS2246A PATTERNMODULE NAME : Mathematical Methods III
DATE : 20-May-09
TIME 14:30
TIME ALLOWED 2 Hours 30 Minutes

All questions, including just parts of questions, may be attempted. Credit will be given for all correct work done.
For guidance: A student should aim to answer correctly the equivalent of five questions in the time available.
The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

1. (a) Define what is meant by a "conservative vector field". If the curl of a field E vanishes, then what can one say about the field \underline{F} being conservative or not?
The vector fields $\underline{F}_{1}(x, y, z)$ and $\underline{F}_{2}(x, y, z)$ are defined, in Cartesian coordinates, by:

$$
\begin{aligned}
& \underline{F}_{1}(x, y, z)=\left(2 x y-z^{5}\right) \hat{e}_{x}+\dot{x}^{2} \underline{\underline{e}}_{y}-\left(5 x z^{4}+1\right) \hat{e}_{z} \\
& \underline{F}_{2}(x, y, z)=\left(2 x y-z^{5}\right) \underline{e}_{x}+x^{2} \underline{\hat{e}}_{y}+\left(5 x z^{4}+1\right) \underline{\hat{e}}_{z}
\end{aligned}
$$

Is either of these vector fields conservative? Show which one of these field is conservative. For this field determine (up to an additive constant) the scalar potential from which such a field arises.
(b) Stokes' theorem states that the line integral of a vector field \underline{G} along a closed loop C is equal to the flux of the curl $\nabla \times \underline{G}$ through the surface enclosed by C :

$$
\oint_{C} \underline{G} \cdot \mathrm{~d} \underline{r}=\int_{C}(\underline{\nabla} \times \underline{G}) \cdot \mathrm{d} \underline{S},
$$

where $\mathrm{d} \underline{S}$ points towards the region of space from where an observer would see the loop integral as anti-clockwise.
Consider the vector field $\underline{G}(x, y, z)$ given, in Cartesian coordinates, by:

$$
\underline{G}(x, y, z)=2 y \underline{\hat{e}}_{x}-3 x \underline{\hat{e}}_{y}+z^{2} \underline{\hat{e}}_{z} .
$$

Find the curl $\underline{\nabla} \times \underline{G}$. Evaluate the line integral $\oint \underline{G}(x, y, z) \cdot \mathrm{d} \underline{r}$ around the square lying in the $x y$ plane ($z=0$) and bounded by the lines $x=3, x=5, y=1$ and $y=3$, either directly or by applying Stokes' theorem (take the line integral anti-clockwise as seen from the positive z semi-space).
[5 marks]
(c) By virtue of the divergence theorem, the outward flux of a vector field \underline{G} through any closed surface S is equal to the volume integral of its divergence $\nabla \cdot \underline{G}$ over the volume V enclosed by the surface:

$$
\int_{S} \underline{G} \cdot \mathrm{~d} \underline{S}=\int_{V} \underline{\nabla} \cdot \underline{G} \mathrm{~d} V,
$$

where $d \underline{S}$ points outward from the closed surface.
Consider the scalar field in Cartesian coordinates:

$$
H(x, y, z)=x^{3}+x y^{2}-z .
$$

Express H in cylindrical polar coordinates ρ, θ and z (where $\rho^{2}=x^{2}+y^{2}$ and $\theta=\arctan (y / x))$. Given the expression for the Laplacian in cylindrical polar coordinates

$$
\nabla^{2} f=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

determine $\nabla^{2} H(\rho, \theta, z)$.
Either directly or by applying the divergence theorem, evaluate the outgoing flux of the gradient ∇H, given by

$$
\int \underline{\nabla} H \cdot \mathrm{~d} \underline{S}
$$

over the total surface of a cylinder of radius R and height h with its base lying on the $z=0$ plane and centred at the origin.
2. Consider the following second-order linear differential equation

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+(2-x) \frac{d y}{d x}+b y=0 \tag{1}
\end{equation*}
$$

where b is a constant. By writing equation (1) in the form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, or otherwise, determine where this equation is singular.
Solutions of equation (1) can be written in the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

Show that $k=0$ or $k=-1$.
[4 marks]
Derive the recurrence relation

$$
a_{n+1}=\frac{n+k-b}{(n+k+1)(n+k+2)} a_{n} .
$$

[5 marks]
Demonstrate that the series solutions converge for all values of x.
In the special case of $b=m$, a positive integer, show that the series with $k=0$ terminates at $n=m$ to yield a polynomial solution.
Obtain this solution for the case of $b=m=2$ and demonstrate that it satisfies the differential equation (1).
3. If a matrix H is described as Hermitian, what property does it have? Prove that the eigenvalues of a Hermitian matrix are real. What property must the associated eigenvectors have?
The matrix A is given by

$$
\underline{A}=\left(\begin{array}{rrr}
5 & -5 & 1 \\
-5 & 11 & -5 \\
1 & -5 & 5
\end{array}\right)
$$

Is \underline{A} Hermitian? What is its trace?
Verify that $\lambda_{1}=16$ is an eigenvalue of \underline{A} and that its associated eigenvector can be written as $\underline{v}_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}1 \\ -2 \\ 1\end{array}\right)$.
Show that $\lambda_{2}=4$ is also an eigenvalue and obtain the third eigenvalue, λ_{3}. Find the normalised eigenvectors corresponding to eigenvalues λ_{2} and λ_{3}.
[11 marks]
4. A particle of mass $m=1$ is moving on a plane. Its position is represented, in Cartesian coordinates, by the two-dimensional vector $\underline{\underline{r}}=$
The particle is subject to a conservative force field $\underline{F}(\underline{r})$, with potential energy $U(\underline{r})$

$$
\left.U(\underline{r})=\underline{2-\sqrt{2}}_{2}^{2} \underline{1-\sqrt{2}}_{2} \quad \frac{1}{(}\right)^{2}
$$

Write down the general relation between the force $\underline{F}(\underline{r})$ and the potential energy $U(\underline{r}) \quad \underline{F}(\underline{r})$ acting on the particle.
[3 marks]
Find the work done against the force $\underline{F}(\underline{r})$ when the particle moves from the point (0,0
Write down the particle's equation of motion and show that it can be written as

$$
\underline{\ddot{r}}=\underline{A} \underline{r}
$$

where \underline{A} is the 2×2 real matrix

$$
A=\left(\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right) .
$$

Find the eigenvalues and eigenvectors of \underline{A}.
[4 marks]
[5 marks]
Use these eigenvalues and eigenvectors to obtain two uncoupled differential equations describing the motion. Solve these equations for the initial conditions $x=$ $y=\frac{\mathrm{d} y}{\mathrm{~d} t}=0$
y.
5. In atomic units the Schrödinger equation for the hydrogen atom can be written as

$$
\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r}\right) \psi=E \psi
$$

where, in spherical polar coordinates:

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

By writing

$$
\psi=R(r) \Theta(\theta) \Phi(\phi)
$$

show that $\Phi(\phi)$ must satisfy the equation

$$
\frac{d^{2} \Phi}{d \phi^{2}}=-m^{2} \Phi
$$

What are the solutions of this equation? Explain why m, the constant of separation, must take integer values.
Hence show that $R(r)$ must satisfy the radial equation

$$
\frac{1}{2} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+R r+E R r^{2}=\lambda R
$$

where λ is another constant of separation. Obtain the corresponding equation for $\theta(\theta)$.
For the special case of $\lambda=0$, show that the radial equation can be written as

$$
\frac{1}{2} \frac{d^{2} U}{d r^{2}}+\left[\frac{1}{r}+E\right] U=0
$$

where $U(r)=r R(r)$. Show that for large values of r

$$
U(r)=A \exp (\alpha r)+B \exp (-\alpha r)
$$

where $\alpha=(-2 E)^{\frac{1}{2}}$. How can this solution be simplified for bound states of the hydrogen atom?
6. (a) Any continuous function $f(x)$ in $-1 \leq x \leq 1$ can be expanded in terms of Legendre polynomials as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x) \text { for }-1 \leq x \leq+1
$$

Given the orthogonality relation

$$
\int_{-1}^{+1} P_{m}(x) P_{n}(x) \mathrm{d} x=\delta_{m n} \frac{2}{2 n+1},
$$

derive a formula for the coefficients a_{n}.
Given the first two Legendre polynomials

$$
P_{0}(x)=1, \quad P_{1}(x)=x,
$$

find the first two coefficients a_{0} and a_{1} of the expansion of the function $\alpha \mathrm{e}^{\alpha|x|}$, where α is real.
(b) The electrostatic potential of a charge Q located on the z axis at the point ($0,0, d$) (in Cartesian coordinates; note that d can be either positive or negative), reads, in spherical polar coordinates:

Add now a second charge $-Q$ on the z axis at point $(0,0,-d)$. Write down an expression for the total potential V_{T} created by the charges Q and $-Q$ in spherical polar coordinates.
Consider a charge q very far from the origin ($d \ll r$). By approximating the total potential V_{T} due to charges Q and $-Q$ to the first non-zero term of the expansion in Legendre polynomials, and using the expression of the gradient in spherical polars (given below), find the electrostatic force acting on the charge q in this case.
The gradient operator in spherical polar coordinates is

$$
\nabla=\underline{\hat{e}}_{r} \frac{\partial}{\partial r}+\hat{\hat{e}}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\hat{e}}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} .
$$

7. (a) Let $f(x)$ be a function of period π defined by

$$
f(x)=\sin (x) \text { for } \quad-\frac{\pi}{2}<x<+\frac{\pi}{2} .
$$

Is $f(x)$ an even or odd function?
Show that the Fourier expansion of $f(x)$ can be written as

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (2 n x)
$$

where the coefficients b_{n} are given by
[4 marks]

$$
b_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin (2 n x) \sin (x) \mathrm{d} x
$$

Determine the coefficients b_{n} and hence show that
[5 marks]

$$
f(x)=\frac{1}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{8 n}{1-4 n^{2}} \sin (2 n x) .
$$

Parseval's identity for a function $f(x)$ with general period $2 L$ reads

$$
\frac{1}{2 L} \int_{-L}^{+L}[f(x)]^{2} \mathrm{~d} x=\left(a_{0} / 2\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Apply Parseval's identity to prove

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}}{64} .
$$

(b) The function $g(x)$ is defined by

$$
\begin{aligned}
& g(x)=\sin (x) \text { for }-l<x<+l, \\
& g(x)=0 \text { for }|x| \geq l,
\end{aligned}
$$

where l is real and positive. The Fourier transform $\tilde{g}(k)$ of $g(x)$ is defined as

$$
\tilde{g}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \mathrm{e}^{-i k x} g(x) \mathrm{d} x
$$

Give the general way to obtain the original function $g(x)$ from its Fourier transform $\tilde{g}(k)$ (i.e., to obtain the inverse Fourier transform of $\tilde{g}(k)$).
Prove that, in the limit $l \rightarrow+\infty$, one has

$$
\lim _{l \rightarrow \infty} \tilde{g}(k)=i \sqrt{\frac{\pi}{2}}[\delta(k+1)-\delta(k-1)]
$$

where $\boldsymbol{\delta}$ stands for the Dirac delta function.

