UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : PHAS2246
ASSESSMENT : PHAS2246A
PATTERN
MODULE NAME : Mathematical Methods III
DATE : 28-Apr-08
TIME . : 14:30
TIME ALLOWED : 2 Hours 30 Minutes

ALL questions, including just parts of questions, may be attempted. Credit will given for all correct work done.

For guidance: A student should aim to correctly answer the equivalent of five questions in the time available.

Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. (a) The temperature $T(x, t)$ in a metal bar at time t satisfies the equation

$$
\frac{\partial^{2} T}{\partial x^{2}}-\frac{1}{2} \frac{\partial T}{\partial t}=0
$$

where the coordinate x lies in the range $0 \leq x \leq 2 \pi$.
By separating the variables x and t, show that one solution for T is given by

$$
T(x, t)=\{A \cos (\lambda x)+B \sin (\lambda x)\} e^{-2 \lambda^{2} t}
$$

where A, B and λ are constants.
If the temperatures at $x=0$ and $x=\pi$ are kept at 0 K , show that the temperature in the bar must have the form

$$
T(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n x) \exp \left(-2 n^{2} t\right) .
$$

where n is a positive interger.
(b) Consider the function

$$
f(x)=\frac{\lambda}{2} \mathrm{e}^{-\lambda|x|} \quad \text { for }-\infty<x<\infty
$$

where λ is real and positive. Is the function $f(x)$ even or odd?
The function $g(k)$ is said to be the Fourier transform of $f(x)$: give an expression linking the two functions.
(b) Consider tun

By splitting the integration into two parts, from $-\infty$ to 0 and from 0 to $+\infty$, or otherwise, determine the Fourier transform $g(k)$ of $f(x)$.
2. If \underline{A} and \underline{B} are both matrices of dimension $n \times n$, prove that

$$
(\underline{B} \underline{A})^{T}=\underline{A}^{T} \underline{B}^{T} .
$$

Hence show that $\underline{A}^{T} \underline{A}$ is symmetric.

A matrix is given by

$$
\underline{B}=\left(\begin{array}{rrr}
2 & 0 & 4 \\
1 & 3 & 2 \\
-1 & 1 & 2
\end{array}\right)
$$

Find the inverse matrix \underline{B}^{-1}.
[7 marks]

For a general, non-singular matrix \underline{A} prove that

$$
\underline{A}^{-1}=\left(\underline{A}^{T} \underline{A}\right)^{-1} \underline{A}^{T}
$$

Verify this result explicitly by using the matrix \underline{B} given above.
3. The matrix \underline{A} is given by

$$
\underline{A}=\left(\begin{array}{rrr}
2 & 1 & 3 \\
1 & 2 & -3 \\
3 & -3 & -2
\end{array}\right)
$$

Verify that the eigenvalues of this matrix are $\lambda_{1}=4, \lambda_{2}=3$ and $\lambda_{3}=-5$. Show that the normalised eigenvector associated with λ_{1} can be written
$\underline{v}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$.
[7 marks]

Find the other two normalised eigenvectors \underline{v}_{2} and \underline{v}_{3}, associated with eigenvalues λ_{2} and λ_{3} respectively.
[6 marks]

Show that these eigenvectors are mutually orthogonal and that, up to a possible [3 marks] overall sign,

$$
\underline{v}_{3}= \pm\left(\underline{v}_{1} \times \underline{v}_{2}\right) .
$$

Explain the origin of these last two results.
4. A matrix \underline{H} is described as Hermitian, what property does it have? Another matrix \underline{R} is described as Unitary, what property does it have?
The (2×2) matrix \underline{H} has elements $H_{11}=H_{22}=-\alpha, H_{12}=H_{21}=\beta$, where α and β are real positive constants with $\alpha>\beta$. If \underline{H} is Hermitian, what properties must the eigenvalues and eigenvectors have?
Determine the eigenvalues and eigenvectors of \underline{H} and hence write down the unitary matrix \underline{R} such that $\underline{R} \underline{R}^{-1}$ is diagonal.
[5 marks]
The following coupled differential equations:

$$
\begin{gathered}
\ddot{x}_{1}=-5 x_{1}+4 x_{2}, \\
\ddot{x}_{2}=4 x_{1}-5 x_{2},
\end{gathered}
$$

where

$$
\ddot{x}_{i}=\frac{d^{2} x_{i}}{d t^{2}}
$$

can be written in matrix form as:

$$
\ddot{\mathrm{x}}=\underline{A} \mathrm{x} .
$$

Give the form for \underline{A} and hence find its eigenvalues and eigenvectors.
Use these eigenvalues and eigenvectors to write two uncoupled differential equations. Hence give a general solution for these equations subject to the initial condition that $x_{1}=x_{2}=0$ at $t=0$.
5. Consider the following second order linear differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-b\right) y=0 \tag{1}
\end{equation*}
$$

where $b \geq 0$.
What is meant by saying a differential equation is even? Is Eq. (1) even? Write the equation in the form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. For what values of x are $p(x)$ and $q(x)$ singular? What kind of singularities are these?
[5 marks]
The equation admits series solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}
$$

Obtain the indicial equation and show that the allowed values of k are +1 and $-b$.

Determine the radius of convergence of the series solution for $k=1$. Show that independent even and odd series solutions exist for $k=1$.
What are the odd and even solutions for the case where $k=-b=0$?
6. Legendre polynomials satisfy the following orthogonality relation:

$$
\begin{equation*}
\int_{-1}^{+1} P_{m}(x) P_{n}(x) \mathrm{d} x=\frac{2}{2 m+1} \delta_{m n} . \tag{1}
\end{equation*}
$$

Explain the significance of such a relation with respect to the possibility of expanding a continous function $f(x)$ in $-1 \leq x \leq+1$ as a sum of Legendre polynomials:

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x) \text { for }-1 \leq x \leq+1 \tag{2}
\end{equation*}
$$

Give a general formula that can be used to evaluate the coefficient a_{n} ?
[1 mark]
$P_{m}(x)$ and $P_{n}(x)$ also satisfy the Legendre equations

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right] & =-n(n+1) P_{n}(x) \tag{3}\\
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(1-x^{2}\right) P_{m}^{\prime}(x)\right] & =-m(m+1) P_{m}(x) \tag{4}
\end{align*}
$$

Multiplying Eq. (3) by $P_{m}(x)$ and Eq. (4) by $P_{n}(x)$, subtracting the two equations, and integrating over x from -1 to +1 , derive Eq. (1) for the case $m \neq n$.
[6 marks]
Given the expression of the first 3 Legendre polynomials

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)
$$

determine the expansion of the function $\left(x^{2}+3 x-1\right)$ in terms of Legendre polynomials.
Consider now the function:

$$
f(x)=\frac{2}{\sqrt{5-4 x}}
$$

Between -1 and +1 , such a function can be expanded as a sum of Legendre polynomials according to Eq. (2). Find out the first two coefficients of the expansion a_{0} and a_{1}.
Using the generating function

$$
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} t^{n} P_{n}(x) \quad \text { for }|t|<1
$$

and choosing a suitable t, determine all the coefficients of the expansion of $f(x)$ in terms of Legendre polynomials.
7. Consider a periodic function of period 2π given by the sum of two periodic functions with the same period 2π :

$$
g(x)=h(x)+j(x) .
$$

Show that the Fourier coefficients of $g(x)$ are given by the sums of the corresponding Fourier coefficients of $h(x)$ and $j(x)$ (that is, the Fourier expansion of $g(x)$ is just the sum of the expansions of $h(x)$ and $j(x))$.
Let $f(x)$ be a periodic function of period 2π defined, between $-\pi$ and $+\pi$, as

$$
f(x)=\cos \left(\frac{x}{2}\right)+\frac{1}{10} \sin (5 x)
$$

Show that the Fourier series of $f(x)$ is given by

$$
f(x)=\frac{2}{\pi}+\frac{1}{10} \sin (5 x)+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{\left(1-4 n^{2}\right) \pi} \cos (n x) .
$$

Evaluating the function in $x=0$, show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}}=\frac{\pi-2}{4}
$$

Apply Parseval's identity to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{\left(1-4 n^{2}\right)^{2}}=\frac{\pi^{2}-8}{16}
$$

The following trigonometric identity can be assumed:

$$
\cos (a x) \cos (b x)=\frac{1}{2}[\cos ((a+b) x)+\cos ((a-b) x)]
$$

