UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : PHAS2246

MODULE NAME : Mathematical Methods III

DATE : **14-May-07**

TIME : 10:00

TIME ALLOWED : 2 Hours 30 Minutes

2006/07-PHAS2246A-001-EXAM-118 ©2006 University College London

TURN OVER

Answer FIVE questions only.

Y

J

Numbers in square brackets show the provisional allocation of marks per subsection of the question.

1. (a) Show that if for two matrices \underline{A} and \underline{B} the product \underline{AB} is defined that

$$(\underline{AB})^T = \underline{B}^T \underline{A}^T$$
 [2 mark]

(b) Given are the matrices

$$\underline{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix} \qquad \underline{B} = \begin{pmatrix} -1 & 0 \\ 4 & 2 \\ 3 & -1 \end{pmatrix} \qquad \underline{C} = \begin{pmatrix} 7 & -1 & 2 \end{pmatrix}$$

Give \underline{A}^T , \underline{B}^T and \underline{C}^T .

[3 marks]

[6 marks]

- (c) Which of the following matrix products are possible? Evaluate the ones which are possible:
 <u>AB</u>, <u>AB^T</u>, <u>BA</u>, <u>B^TA^T</u>, <u>AC</u>, <u>CA</u>, <u>CB</u>, <u>B^TC^T</u>, <u>CC</u>. [9 marks]
- (d) Calculate \underline{A}^{-1} .

PHAS2246/2007

CONTINUED

2. The real quadratic form F in three dimensions is given by:

$$F = 2x^2 - 8xy + 2y^2 + 4z^2 = 0 ,$$

(a) Write down the matrix \underline{A} so that F is given by

$$F = \underline{v}^T \underline{A} \underline{v} = 0 ,$$

with $\underline{v}^T = \begin{pmatrix} x & y & z \end{pmatrix}$.

(b) Find the three different eigenvalues of \underline{A} by writing the characteristic equation in the form

$$(p-\lambda)\left\{(q-\lambda)^2 - r\right\} = 0$$

and calculating the values of p, q and r. Calculate the three corresponding normalized eigenvectors.

(c) Evaluate the transformation matrix \underline{S} , for which $\underline{S}^T \underline{AS}$ is diagonal. [2 marks] Set $\underline{u} = \underline{S}^T \underline{v}$ and write the quadratic form F in the new variables $\underline{u}^T = \begin{pmatrix} \tilde{x} & \tilde{y} & \tilde{z} \end{pmatrix}$.

[12 marks]

[2 marks]

[4 marks]

CONTINUED

- 3. \underline{f} and \underline{g} are real vector fields in three dimensions and U and V are real scalar fields in three dimensions.
 - (a) Define the terms div, grad and curl in terms of the operator ∇ , real vector field f and scalar field U.
 - (b) Proof $\underline{\nabla} \times (\underline{\nabla}U) = 0$ and $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{f}) = 0$ [4 marks] and then show that $r^2 - 2$

$$\underline{f} = \frac{r^2 - 2}{r^4} \underline{r} \; ,$$

with $\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $r = |\underline{r}|$,

can be written as a gradient field
$$(f = grad U)$$
 [5 marks]

(c) Show $\underline{\nabla} \cdot (U\underline{\nabla}V) = (\underline{\nabla}U) \cdot (\underline{\nabla}V) + U\underline{\nabla} \cdot (\underline{\nabla}V).$ [4 marks]

(d) Show
$$\underline{\nabla} \cdot (\underline{f} \times \underline{g}) = \underline{g} \cdot (\underline{\nabla} \times \underline{f}) - \underline{f} \cdot (\underline{\nabla} \times \underline{g}).$$
 [4 marks]

4. Solve

)

$$2(x^{2} + x^{3})\frac{d^{2}y}{dx^{2}} - (x - 3x^{2})\frac{dy}{dx} + y = 0 ,$$

with a general series solution. Write the differential equation in the general form

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0 \; .$$

Evaluate the singular points of the differential equation. The equation has [2 marks] a series solution of the form

$$y = \sum_{n=0}^{\infty} a_n x^{n+k} \; .$$

Write down the indicial equation and show that $k = \frac{1}{2}$ and k = 1. Show [3 marks] that the recursion relations are given by

$$a_{n+1} = -a_n . ag{8 marks}$$

Give the radius of convergence of these series. Calculate the first 4 terms [2 marks] of the series solution and show that the general solution can be written in the form

$$y(x) = \frac{Ax + B\sqrt{x}}{1+x} .$$
 [5 marks]

PHAS2246/2007

CONTINUED

[3 marks]

5. The function f(x) is defined on the intervall $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ with

 $f(x) = 2\cos x$

- (a) Is f(x) and even or odd function?
- (b) The Fourier expansion is given by

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} ,$$

with $-L \le x \le L$. Show that the Fourier coefficients of $f(x) = 2\cos x$ with $L = \frac{\pi}{4}$ are given by

$$a_{n} = \frac{4}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \cos(4nx) dx$$

$$b_{n} = 0.$$
[7 marks]

(c) Evaluate the coefficients a_n and show

$$f(x) = \frac{4\sqrt{2}}{\pi} + \frac{8\sqrt{2}}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{1}{1 - 16n^2} \cos 4nx .$$
 [8 marks]

Hints:

$$\int \cos ax \cos bx \ dx = \frac{1}{2} \left(\frac{\sin(a-b)x}{a-b} + \frac{\sin(a+b)x}{a+b} \right)$$

and

 $\sin(a+b) = \sin a \cos b + \cos a \sin b.$

(d) By considering f(x) at $x = \pi/4$ calculate the value of the series

$$\sum_{n=1}^{\infty} \frac{1}{16n^2 - 1}$$
 [4 marks]

PHAS2246/2007

CONTINUED

[1 mark]

1

4

6. (a) Use

$$nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)$$

with $P_0(x) = 1$ and $P_1(x) = x$ to calculate $P_2(x)$ and $P_3(x)$. Then express

i. $3x^2 + x - 1$ ii. $x - x^3$

in terms of a finite series of Legendre polynomials.

(b) The generating function g(x,t) is related to the Legendre polynomials via

$$g(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} t^n P_n(x) .$$
 (1)

Show

$$(x-t)\frac{\partial g}{\partial x} = t\frac{\partial g}{\partial t}$$
(2) ^[4 marks]

(c) By substituting the series from equation (1) into equation (2) show that

$$xP'_{n}(x) - P'_{n-1}(x) = nP_{n}(x)$$
(3)

where the prime denotes the derivative with respect to x.

(d) Differentiate

$$(1 - x^2)P'_n(x) = nP_{n-1}(x) - nxP_n(x)$$

with respect to x and eliminate P'_{n-1} with the help of equation (3). What is the resulting equation? [5

[5 marks]

[5 marks]

PHAS2246/2007

CONTINUED

[6 marks]

7. The Schrödinger equation for a particle of mass m in a one dimensional potential V(x) is given by

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = i\hbar\frac{\partial\Psi(x,t)}{\partial t}$$

(a) If you write $\Psi(x,t) = F(x) \times T(t)$ show that the solution of the differential equation is of the form

$$T(t) = Ce^{-iEt/\hbar}$$
 [3 marks]

(b) Show, that for zero potential $(V(x) \equiv 0)$, the solution is given by

$$\Psi(x,t) = \{A\cos kx + B\sin kx\} e^{-iEt/\hbar}$$
(4) [2 marks]

Further show that k and E are related by

$$k^2 = \frac{2m}{\hbar^2} E$$
 [1 mark]

(c) Assume now that V = 0 for $0 \le x \le l$ and $\Psi(x, t) = 0$ at x = 0 and x = l for all times t. Show that the general solution fulfilling these boundary conditions is

$$\Psi(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{l} e^{-iE_n t/\hbar}$$

Give E_n as a function of n.

(d) $|\Psi|^2$ is the probability of finding a particle at position x. Show that in order to to ensure

$$\int_0^l |\Psi|^2 \, dx = 1 \; .$$

the coefficients B_n have to obey

$$\sum_{n=0}^{\infty} |B_n|^2 = \frac{2}{l}$$

[6 marks]

[8 marks]

Hint: $\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \pi \delta_{nm}$.

PHAS2246/2007

END OF PAPER