UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ş

Mathematics M14B: Mathematical Methods 2

COURSE CODE	:	MATHM14B
UNIT VALUE	:	0.50
DATE	:	15-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0947-3-200 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) State, without proof, the general formula for a Fourier series on (-L, L), with L > 0, for a function f(x), giving the expressions for the coefficients.
 - (b) On $(-\pi, \pi)$, find the Fourier series of f(x) = x.
 - (c) Hence or otherwise, find the Fourier series of $g(x) = x^2$, on the range $(-\pi, \pi)$.
 - (d) Hence or otherwise, show that

$$\frac{\pi^4}{90} = \sum_{n=1}^{\infty} \frac{1}{n^4},$$

stating (without proof) any well known identity used.

2. (a) In the following, $r = |\mathbf{r}|$, where \mathbf{r} is the position vector. Expressing your answers in terms of r and \mathbf{r} as far as possible, determine the values of

 $\operatorname{grad} r$, $\operatorname{grad} r^{-1}$, $\operatorname{div} \operatorname{grad} r^{-1}$, $\operatorname{div} \mathbf{r}$, $\operatorname{curl} \operatorname{curl} (\mathbf{r} \times \mathbf{a})$,

where \mathbf{a} is a constant vector.

(b) Find

3

$$\phi = \operatorname{div} \operatorname{grad} (\exp(x) \sin(\lambda(y+z)) \cos(\mu(y-z))).$$

What is the condition on λ and μ for $\phi \equiv 0$?

3. (a) Find the arc length of the curve C given by

$$\mathbf{r}(t) = (\cos(t), \sin(t), t), \quad 0 \leq t \leq 2\pi.$$

Sketch the curve C.

(b) Find

$$I = \int_C \mathbf{F} \cdot d\mathbf{r},$$

where C is defined in 3a and $\mathbf{F} = (y, x, x^2 + y^2)$.

(c) Determine whether or not the vector field **F** defined in 3b is conservative.

PLEASE TURN OVER

MATHM14B

4. (a) Define the Jacobian

$$rac{\partial(x,y)}{\partial(u,v)},$$

where x(u, v) and y(u, v) are smooth functions. Show directly from your definition that

$$\frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)}\right)^{-1}.$$

- (b) Determine the Jacobian, from your definition, for the change of coordinates from Cartesian coordinates to plane polar coordinates.
- (c) By a suitable change of coordinates, or otherwise, find

$$I = \int_0^\infty \int_0^\infty \exp\left(-a(x^2 + y^2)\right) \, dx \, dy,$$

where a is a positive constant, and show in a diagram the region of integration.

5. (a) State carefully the divergence theorem.

(b) Expand

$$\operatorname{div}\left((\mathbf{J})(\mathbf{r}\cdot\mathbf{c})\right),$$

where $\operatorname{div} J = 0$ and c is a constant vector.

(c) Hence, or otherwise, turn the following volume integral into a surface integral:

$$\int_V \mathbf{J} \ dV,$$

where div $\mathbf{J} = \mathbf{0}$ and V is some bounded region of three-dimensional space with surface S.

- (d) Verify your result for 5c in the case where $\mathbf{J} = \mathbf{k}$ and V is the unit ball.
- 6. (a) State carefully Stokes' theorem.
 - (b) State carefully Green's theorem in the plane.
 - (c) Show that Green's theorem in the plane is a special case of Stokes' theorem, defining all your symbols carefully.
 - (d) Verify Green's theorem in the plane for

$$\oint_C (y^3 dx + xy dy),$$

where C is the unit circle. *Hint: Use symmetry arguments where possible.*

MATHM14B

END OF PAPER

4