UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M14B: Mathematical Methods 2

COURSE CODE : MATHM14B

UNIT VALUE : 0.50

DATE : 15-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State, without proof, the general formula for a Fourier series on $(-L, L)$, with $L>0$, for a function $f(x)$, giving the expressions for the coefficients.
(b) On $(-\pi, \pi)$, find the Fourier series of $f(x)=x$.
(c) Hence or otherwise, find the Fourier series of $g(x)=x^{2}$, on the range $(-\pi, \pi)$.
(d) Hence or otherwise, show that

$$
\frac{\pi^{4}}{90}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

stating (without proof) any well known identity used.
2. (a) In the following, $r=|\mathbf{r}|$, where \mathbf{r} is the position vector. Expressing your answers in terms of r and \mathbf{r} as far as possible, determine the values of

$$
\operatorname{grad} r, \quad \operatorname{grad} r^{-1}, \quad \operatorname{div} \operatorname{grad} r^{-1}, \quad \operatorname{div} \mathbf{r}, \quad \operatorname{curl} \operatorname{curl}(\mathbf{r} \times \mathbf{a})
$$

where \mathbf{a} is a constant vector.
(b) Find

$$
\phi=\operatorname{div} \operatorname{grad}(\exp (x) \sin (\lambda(y+z)) \cos (\mu(y-z))) .
$$

What is the condition on λ and μ for $\phi \equiv 0$?
3. (a) Find the arc length of the curve C given by

$$
\mathbf{r}(t)=(\cos (t), \sin (t), t), \quad 0 \leqslant t \leqslant 2 \pi .
$$

Sketch the curve C.
(b) Find

$$
I=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is defined in 3 a and $\mathbf{F}=\left(y, x, x^{2}+y^{2}\right)$.
(c) Determine whether or not the vector field \mathbf{F} defined in 3 b is conservative.
4. (a) Define the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}
$$

where $x(u, v)$ and $y(u, v)$ are smooth functions. Show directly from your definition that

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1}
$$

(b) Determine the Jacobian, from your definition, for the change of coordinates from Cartesian coordinates to plane polar coordinates.
(c) By a suitable change of coordinates, or otherwise, find

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-a\left(x^{2}+y^{2}\right)\right) d x d y
$$

where a is a positive constant, and show in a diagram the region of integration.
5. (a) State carefully the divergence theorem.
(b) Expand

$$
\operatorname{div}((\mathbf{J})(\mathbf{r} \cdot \mathbf{c}))
$$

where $\operatorname{div} \mathbf{J}=\mathbf{0}$ and \mathbf{c} is a constant vector.
(c) Hence, or otherwise, turn the following volume integral into a surface integral:

$$
\int_{V} \mathbf{J} d V
$$

where $\operatorname{div} \mathbf{J}=0$ and V is some bounded region of three-dimensional space with surface S.
(d) Verify your result for 5 c in the case where $\mathbf{J}=\mathbf{k}$ and V is the unit ball.
6. (a) State carefully Stokes' theorem.
(b) State carefully Green's theorem in the plane.
(c) Show that Green's theorem in the plane is a special case of Stokes' theorem, defining all your symbols carefully.
(d) Verify Green's theorem in the plane for

$$
\oint_{C}\left(y^{3} d x+x y d y\right)
$$

where C is the unit circle. Hint: Use symmetry arguments where possible.

